期刊文献+

幂零流形上自映射的点态原像熵的可加性

The Additivity of Pointwise Preimage Entropy for Selfmaps on Nilmanifolds
原文传递
导出
摘要 类似于拓扑熵,点态原像熵作为动力系统的不变量,也度量了紧度量空间上系统的复杂性.但至今不知其性质与拓扑熵是否完全一致,例如映射笛卡尔积的点态原像熵的可加性等.本文将把环面自映射笛卡尔积的点态原像熵的可加性,推广到紧幂零流形自映射的情形. Pointwise preimage entropy is similar to topological entropy but,in general,their properties are not completely coincident such as additivity of under Cartesian product.In this paper we show that the description of the additivity of pointwise preimage entropy of the torus maps under Cartesian product given by myself extends to the case of the maps of compact nilmanifolds.
作者 黄保军 Bao Jun HUANG(Department of Electronic and Information Engineering,Bozhou University,Bozhou 236800,P.R.China;School of Mathematical Science,Huaibei Normal University,Huaibei 235000,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2019年第6期913-922,共10页 Acta Mathematica Sinica:Chinese Series
基金 亳州市人才引进项目资助课题
关键词 点态原像熵 可加性 幂零流形 pointwise preimage entropy additivity nilmanifolds
  • 相关文献

参考文献1

二级参考文献5

  • 1Langevin R, Przytycki F. Entropie de I'image inverse d'une application [J]. Bull. Soc. Math. France,1992, 120: 237-250.
  • 2Hurley M. On topological entropy of maps[J]. Ergod. Th. and Dynam. Sys., 1995, 15: 557-568.
  • 3Kiang T. The Theory of Fixed Point Classes[M]. Springer-Verlag, Berlin: 1989, Springer-Verlag, Berlin:1989.
  • 4Brooks R, Odenthal C. Nielsen numbers for roots of maps of aspherical manifolds [J]. Pacific J. Math.,1995, 170: 405-420.
  • 5Mal'cev A I. On a class of homogeneous spaces[J]. (English transl.) Amer. Math. Soc. Transl. (1),1962, 9: 276-307.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部