期刊文献+

负径向电场对带电粒子俘获率影响的数值模拟

Numerical Simulation of Influence of Negative Radial Electric Field on Charged Particle Capture Rate
下载PDF
导出
摘要 本文采用数值方法求解Grad-Shafranov方程反演EAST典型长脉冲放电实验(炮号33068)的平衡位形和磁场分布,进而结合粒子在托卡马克电磁场中的运动方程,模拟氘离子在负径向电场存在时的运动轨迹,并统计不同负径向电场下的氘离子俘获率。结果表明:随负径向电场的增大,氘离子轨迹由扩张通行轨迹向外翻香蕉轨迹再向内翻香蕉轨迹,最后向压缩通行轨迹演变;氘离子俘获率随负径向电场的增大而减小,氘离子初始速度越小,其变化越大。 The equilibrium configuration and magnetic distribution were achieved by numerically solving Grad-Shafranov equation in the typical long-pulse discharge(shot 33068)on EAST in this paper.Considering the motion equation of particles in magnetic field,deuterium ion orbit was simulated when negative radial electric field existed,and also,the deuterium ion capture rate was statistically calculated.The results indicate that the deuterium ion orbit converts from expansion passing particle orbit to expansion trapped particle orbit firstly,and then,to compression trapped particle orbit,and further,to compression passing particle orbit when the negative radial electric field becomes large.The deuterium ion capture rate decreases with the increase of negative radial electric field,and the smaller the initial velocity of deuterium ion,the greater the change.
作者 钟翊君 龚学余 黄千红 谭清懿 龚蕾 杜丹 ZHONG Yijun;GONG Xueyu;HUANG Qianhong;TAN Qingyi;GONG Lei;DU Dan(University of South China,Hengyang 421001,China;Fuqing Nuclear Power Plant,Fuqing 350300,China)
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2019年第11期2129-2134,共6页 Atomic Energy Science and Technology
基金 国际热核聚变实验堆计划专项资助项目(2018YEE0303102,2018YEE0309101) 衡阳市科技局资助项目(2018KJ126) 国家自然科学基金资助项目(11347002,11375085) 衡阳市重点实验室资助项目(2018KJ108) 湖南省核聚变国际科技创新合作基地资助项目(2018WK4009)
关键词 平衡位形 离子轨迹 俘获率 equilibrium configuration ion orbit capture rate
  • 相关文献

参考文献5

二级参考文献14

  • 1龚学余,谢安平,彭晓炜,刘文艳.Tokamak等离子体不同运行模式下产生的自举电流[J].南华大学学报(自然科学版),2005,19(1):1-5. 被引量:3
  • 2张杰,罗家融,王少杰.中型tokamak中快离子的约束[J].物理学报,2006,55(3):1077-1082. 被引量:5
  • 3彭晓炜,龚学余,刘文艳.中心负剪切模式中的电子回旋波电流驱动数值模拟(英文)[J].湘潭大学自然科学学报,2006,28(4):24-30. 被引量:4
  • 4龚学余.博士学位论文[M].成都:核工业西南物理研究院,2001..
  • 5Kirneva N A.Recent developments in electron cyclotron current drive.Plasma Phys Control Fusion,2001;43(12A):A195-A206.
  • 6Prater R.Heating and current drive by electron cyclotron waves.Phys of Plasma,2004;5(11):2349-2376.
  • 7Robinson D C,Cox M,Lloyd B,et al.Progress with heating and current drive technologies.Fusion Eng and Des,1999;46(2):355-370.
  • 8Thumm M.MW gyrotron development for fusion plasma applications.Plasma Phys Controlled Fusion,2003;45(12A):A143-A161.
  • 9Thumm M.Development of output windows for high-power long-pulse gyrotrons and EC wave applications.Int J Infrared Millim Waves 1998;19(1):3-14.
  • 10Simonetto A,Shoucri M,Farina D,et al.A numerical code for the solution of the relativistic bounce-averaged Fokker-Planck equation.Milano Italy,IFP-CNR Internal Report,FP 00/08,2000.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部