期刊文献+

基于距离修正及灰狼优化算法对DV-Hop定位的改进 被引量:22

Improvement for DV-Hop Based on Distance Correcting and Grey Wolf Optimization Algorithm
下载PDF
导出
摘要 无线传感器网络在实际应用中普遍存在节点布设不均匀的状况,导致使用经典DV-Hop(Distance Vector-Hop)方法实现节点定位存在较大的误差。为了提高定位精度,提出基于测距修正及灰狼优化算法的改进策略。首先,针对未知节点到每一目标锚节点的平均每跳距离校正值,采用一种相似路径搜索算法获得网络内一条最相似锚节点对间的多跳路径用于确定该值,以期提高未知节点到锚节点距离估计值的精度;进而,在使用Lateration算法获得未知节点初始位置后增加改进的灰狼群体智能算法优化步骤,以期提高定位精度。仿真实验结果显示,所提出的改进策略相对经典DV-Hop定位方法以及典型的改进方法,提高了对网络拓朴变化的鲁棒性,定位精度有了显著改善。 In the practical application of wireless sensor network,the node layout is not uniform usually,and that leads to relatively big node localization error of the classical DV-Hop(Distance Vector-Hop)method in use.In order to improve the localization accuracy,an improved strategy based on distance correcting and modified GWO(Grey Wolf Optimizer)algorithm is proposed.Firstly,aiming at the correction of the average distance per hop from an unknown node to each target anchor node,this strategy adopts a similar path searching algorithm to obtain the most similar path between anchor node pairs in the network to determine the value,so as to improve the accuracy of the estimated value of the distance from unknown node to anchor node.Then,a modified GWO algorithm is adopted to optimize the original positions of unknown nodes obtained by Lateration algorithm,in order to improve the final localization accuracy.The simulation results show that compared with the classical DV-Hop localization method and a typical improved method,our proposed strategy improves the robustness to network topology changes,and the localization accuracy has been significantly improved.
作者 石琴琴 徐强 张建平 SHI Qinqin;XU Qiang;ZHANG Jianping(School of Computer Science&Information Engineering,Shanghai Institute of Technology,Shanghai 201418,China;Suzhou Zhongke Advanced Technology Research Institute Co.Ltd,Suzhou Jiangsu 215123,China;Sino Parking Tech Co.Ltd,Shanghai 200127,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2019年第10期1549-1555,共7页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61103180) 上海应用技术大学协同创新基金项目(XTCX2018-15) 上海市联盟计划项目(LM201973)
关键词 无线传感器网络 节点定位 DV-HOP 相似路径 Lateration 灰狼算法 wireless sensor networks node localization DV-Hop similar path lateration grey wolf optimizer
  • 相关文献

参考文献6

二级参考文献75

  • 1陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 2MAO Guoqiang, FIDAN B, ANDERSON B. Wireless sensor network localization techniques [J]. Computer Networks, 2007, 51(10): 2529-2553.
  • 3NATH S, EKAMBARAM V N, KUMAR A, et al. Theory and algorithms for hop-count-based localization with random geometric graph models of dense sensor networks [J]. ACM Transactions on Sensor Networks, 2012, 8(4): 111-152.
  • 4NICULESCU D, NATH B. DV based positioning in Ad Hoc networks [J]. Telecommunication Systems, 2003, 22(1): 267-280.
  • 5KUMAR S, LOBIYAL D. An advanced DV-hop localization algorithm for wireless sensor networks [J]. Wireless Personal Communications, 2012, 71(2): 1365-1385.
  • 6WANG Yun, WANG Xiaodong, WANG Demin, et al. Range-free localization using expected hop progress in wireless sensor networks [J]. IEEE Transactions on Parallel and Distributed System, 2009, 20(10): 1540-1552.
  • 7VURAL S, EKICI E. On multihop distances in wireless sensor networks with random node locations [J]. IEEE Transactions on Mobile Computing, 2010, 9(4): 540-552.
  • 8WEI Quanrui, HAN Jiuqiang, ZHONG Dexing, et al. An improved multihop distance estimation for DV-Hop localization algorithm in wireless sensor networks [C] ∥Proceedings of the IEEE 76th Vehicular Technology Conference. Piscataway, NJ, USA: IEEE, 2012: 1-5.
  • 9李善仓,傅鹏,张德运.无线传感器网络中的分布式节点定位方法[J].西安交通大学学报,2007,41(12):1418-1422. 被引量:19
  • 10韩光洁.智能空间中传感器网络节点精确定位与路径规划[M]. 北京:科学出版社,2013.

共引文献267

同被引文献112

引证文献22

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部