期刊文献+

基于深度学习的甲状腺淋巴结转移癌病理诊断方法 被引量:2

Pathological Diagnostic Method of Thyroid Lymph Node Metastases Based on Deep Learning
下载PDF
导出
摘要 为了自动化识别甲状腺淋巴结转移癌,提出了多任务中心的深度学习诊断方法。以卷积神经网络算法为基础构造了镜下结构观察任务中心和镜下细胞观察任务中心,以模拟完整的镜下诊断过程,而且各中心的观察因素呈多样性;诊断任务中心采用的是多因素下的直觉模糊集诊断方式,从而综合给出诊断结果。该方法完整地模拟了病理医生的显微镜下分析过程,实验结果表明了该方法的有效性,甲状腺淋巴结转移癌的识别率结果令人满意。 In order to automatically identify thyroid lymph node metastases,a deep leaning pathology diagnosis of multitask centers was proposed.The observation task center of structure under the microscope and the observation task center of cell under the microscope were constructed based on the convolution neural network algorithm,which can be used to simulate the complete diagnosis process,furthermore the observation factors of task center are various.The intuitionistic fuzzy set was used to give the comprehensive diagnosis results.The method simulates the whole diagnostic process of doctors,the experimental result shows that the method is effective and the recognition rate of thyroid lymph node metastases is satisfactory.
作者 彭雅琴 成孝刚 黄文斌 PENG Ya-qin;CHENG Xiao-gang;HUANG Wen-bin(Department of Computer Science and Engineering,Sanjiang University ,Nanjing 210012,China;Department of Telecommunication and Information Engineering,Nanjing University of Posts and Telecommunications ,Nanjing 210003,China;Department of Pathology,Nanjing Hospital Affiliated to Nanjing Medical University ,Nanjing 210006,China)
出处 《科学技术与工程》 北大核心 2019年第29期184-187,共4页 Science Technology and Engineering
基金 国家重点基础研究发展计划(973计划)(2005CB321901) 江苏省重点研发计划重点项目(BE2016001-3) 江苏省高校自然科学基金(17KJB520032)资助
关键词 卷积神经网络 深度学习 直觉模糊集 病理 convolutional neural networks deep learning intuitionistic fuzzy set pathology
  • 相关文献

参考文献2

二级参考文献39

  • 1Bengio Y, Courville A, Vincent P. Representation Learning: A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8) : 1798-1828.
  • 2Zhao Zeng-shun, Zhang Li, Zhao Meng, et al. Gabor face recog- nition by multi-channel classifier fusion of supervised kernel manifold learning[J]. Neuro-computing, 2012,97:398-404.
  • 3Ji S, Xu W, Yang M, et at. 3D convolutional neural networks forhuman action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35 (1) : 221-231.
  • 4Mobahi, Hossein,Collobert R, et al. Deep learning from tempo- ral coherence in video[C]//Proceedings of the 26th Annual In- ternational Conference on Machine Learning. ACM, 2009:737- 744.
  • 5Karpathy, Andrej, et al. Large-scale video classification with convolutional neural networks[C]//IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). 2014.
  • 6Memisevic R. Learning to relate images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8) : 1829-1846.
  • 7Pollock D S G. Circulant matrices and time-series analysis[J].International Journal of Mathematical Education in Science and Technology, 2002,33 (2) : 213-230.
  • 8Taylor G W, Fergus R, Lecun Y, et al. Convolutional learning of spatio-temporal features[M]//Computer Vision-ECCV 2010. Springer, 2010 : 140-153.
  • 9Le Q V, Zou W Y, Yeung S Y, et al. Learning hierarchical inva- riant spatio-temporal features for action recognition with inde- pendent subspace analysis[C]//2011 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). IEEE, 2011: 3361-3368.
  • 10Bregonzio M, Xiang T, Gong S. Fusing appearance and distribu- tion information of interest points for action recognition[J]. Pat- tern Recognition, 2012,45 (3) : 1220-1234.

共引文献30

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部