期刊文献+

一种改进的汽车雷达数据实时聚类算法 被引量:3

An Improved Real-time Clustering Algorithm for Automotive Radar Data
下载PDF
导出
摘要 为了更好地在复杂多目标环境下进行汽车雷达数据的实时聚类,使用扩展卡尔曼滤波算法(EKF)对基于密度的聚类算法(DBSCAN)进行改进,并通过仿真和实测实验进行验证。结果表明:新算法在进行增量聚类时每次耗时可以保持在一个稳定且较低的水平;新聚类在不增加时间复杂度的情况下进行自适应聚类,可以解决汽车雷达数据密度不均匀的情况。可见新算法同时实现了增量和自适应DBSCAN聚类,同时保证聚类的效率和准确度。 In order to better perform real-time clustering of automotive radar data in a complex multi-target environment,the extended kalman filtering algorithm(EKF)is used to improve the density-based spatial clustering of applications with noise(DBSCAN)and verified by simulation and actual experiments.The results show that the new algorithm can maintain a stable and low level each time in incremental clustering;The new clustering performs adaptive clustering without increasing the time complexity,which can solve the problem of uneven data density of automobile radar.It can be seen that the new algorithm realizes both incremental and adaptive DBSCAN clustering,while ensuring the efficiency and accuracy of clustering.
作者 蒋留兵 温和鑫 车俐 JIANG Liu-bing;WEN He-xin;CHE Li(School of Computer Science and Information security,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《科学技术与工程》 北大核心 2019年第27期204-209,共6页 Science Technology and Engineering
基金 国家自然科学基金(61561010) 广西自然科学基金(2017GXNSFAA198089) 广西重点研发计划项目(桂科AB18126003、AB16380316) 桂林电子科技大学研究生教育创新计划项目(2019YCXS047)资助
关键词 汽车雷达 增量聚类 自适应聚类 改进DBSCAN算法 扩展卡尔曼滤波 automotive radar incremental clustering adaptive clustering improved DBSCAN algorithm extended Kalman filter
  • 相关文献

参考文献3

二级参考文献27

  • 1冯少荣,肖文俊.基于密度的DBSCAN聚类算法的研究及应用[J].计算机工程与应用,2007,43(20):216-221. 被引量:34
  • 2..http://www.ics.uci.edu/mleam/MLSununary.html,.
  • 3MacQueen J.Some methods for classification and analysis of multivariate observations[C]//LeCam L,Neyman J,eds.Proceedings of the Fifth Berkeley Symposium on Mathematics,Statistics and Probability.Berkeley:University of California Press,1967:281-297.
  • 4Leonard Kaufman,Peter J Rousseenw.Finding groups in data:An introduction to cluster analysis[M].New York:Wiley Press,2005.
  • 5Tan P N,Steinbach M,Kumar V 著,范明,范宏建,等译,数据挖掘导论(Introduction to DataMining).北京:人民邮电出版社,2006.
  • 6Ester M,Kriegel H P,Sander J.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Simoudis E,Hart JW,Fayyad UM,eds.Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231.
  • 7Ankerst M,Breunig M M,Kriegcl H P.OPTICS:ordering points to identify the clustering structure[C]//Alex Dells,Christns Faloutscs,Shahram Ghandeharizadeh eds.Proceedings of the ACM SIGMOD'99 lnt Conf on Management of Data.Philadelphia Pennsylvania:ACM Press,1999:49-60.
  • 8Hinneburg A,Keim D A.An efficient approach to clustering in large multimedia databases with noise[C]//Rakesh Agrawal,Paul Stolorz,eds.Proceedings of the 4th lnt Conf on Knowledge Discovery and Data Mining.New York:AAAI Press,1998:58-65.
  • 9Feng P J,C,e L D.Adaptive DBSCAN-bused algorithm for constellation reconstruction and modulation identification[C]//Keyun Tang,Dayong Lio,eds.Proceedings of Radio Science Conference 2004.Beijing:Pub House of Electronics Industry,2004:177-180.
  • 10Halkidi M,Vazirgiannis M.Clustering validity assessment:finding the optimal partitioning of a data set[C]//Nick Cerenne,Tsau Young Lin,Xindeng Wu eds.Prueecdings of the 2001 IEEE International Conference on Data Mining.California:IEEE Computer Society,2001:187-194.

共引文献94

同被引文献17

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部