期刊文献+

基于配电网泛在电力物联网智能互动化的应用研究 被引量:3

Research on the Application of Intelligent Interaction of Widespread Power Internet of Things Based on Distribution Network
下载PDF
导出
摘要 近年来,依托“大云物移”等先进技术,我国配电网智能互动化水平得到提升,论文系统梳理对比了国际、国内配电网智能互动发展现状及相关研究情况,建议基于泛在物联网的互动化建设,要加强基础性、前瞻性和关键技术攻关,突破泛在电力物联网发展技术瓶颈,研制核心智能装备。 In recent years,relying on advanced technologies such as "big data,internet of things,mobile network and cloud computing",the level of intelligent interaction of distribution network in China has been improved. The paper systematically combs and compares the development status of intelligent interaction of distribution network at home and abroad and relevant research. Based on the interactive construction of widespread internet of things,this paper suggests that we should strengthen the basic,forward-looking and key technology research,break through the bottleneck of ubiquitous internet of things development technology,and develop core intelligent equipment.
作者 张嵩 刘洋 ZHANG Song;LIU Yang(Institute of Economics and Technology,State Grid Jibei Electric Power Co. Ltd.,Beijing 100038,China;Party Committee Party Building Department,State Grid Jibei Electric Power Company Limited,Beijing 100054,China)
出处 《中小企业管理与科技》 2019年第29期156-157,共2页 Management & Technology of SME
关键词 配电网 泛在电力物联网 智能互动 distribution network widespread power internet of things intelligent interaction
  • 相关文献

参考文献5

二级参考文献62

  • 1李庚银,罗艳,周明,王宇宾.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3):25-30. 被引量:88
  • 2杨正瓴,田勇,张广涛,林孔元.相似日短期负荷预测的非线性理论基础与改进[J].电网技术,2006,30(6):63-66. 被引量:29
  • 3庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响[J].继电器,2007,35(11):5-8. 被引量:83
  • 4Merv Adrian. Big data: it's going mainstream and it's your next opportunity[J]. Teradata Magazine, 2011, 5(1): 3-5.
  • 5Manyika J, Chui M, Brown B, et al. Big data: the next frontier for innovation, competition, and productivity [R]. USA: MckinseyGlobal Institute, 2011.
  • 6JiaWei Han, Micheline K, Jian P. Data mining: Concepts and technique[M]. 3rded. New York.. Elsevier, 2011.
  • 7曲朝阳,王蕾,曲楠,等.智能电网知识处理与可视化模型方法[M].北京:科学出版社,2013.
  • 8Quinlan J R. Programs for machine learning[M]. San Francisco: Morgan Kaufmann Publishers, 1993: 23-26.
  • 9Breiman L, Frieman J, Olshen R, et al. Classification and regression trees[M]. Chapman and Hall/CRC, 1984: 32-35.
  • 10Mehta M, Agrawal R, Rissanen J. SLIQ: A fast scalable classifier for data mining[C]//Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology. France: EDBT, 1996: 67-78.

共引文献392

同被引文献30

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部