期刊文献+

一种融合多链接关系和内容属性的网络社区检测方法

Community Detection Method Based on Multi-link Relationships and Node Content Attributes
下载PDF
导出
摘要 针对网络社区检测中链接关系数据和内容数据融合问题,提出一种融合多链接关系和内容数据的网络社区检测方法。首先,对多个链接关系网络进行融合,剔除其中错误信息;然后,利用链接关系网络的近邻结构实现图模型构建;最后,利用对称非负矩阵分解对近邻图和内容数据进行融合,通过引入不同视角归属矩阵间差异函数来松弛对归属矩阵约束,进而设计有效迭代方法,获得更加准确社区划分结果。对真实数据集实验结果表明,文章提出的检测算法能够有效融合两种不同性质的数据信息,获得更真实社区检测结果,并且能够克服不同视角数据质量差异大问题,保持结果稳定性。 In order to realize the fusion of multi-link relations and node content attributes for community detection,a new method is proposed.Firstly,the multiple link relation networks are fused and the error information is removed.Secondly,the neighbor relation structure of the link relation network is used to construct the graph model.Finally,the symmetric non-negative matrix factorization (NMF) is used to fuse the neighbor graph and the content data.By introducing the difference function between the different perspectives,the constraints on the attribution matrix are relaxed,and then an effective iterative method is designed to obtain a more accurate community partitioning.Experimental results on real datasets show that the multi-view detection algorithm proposed in this paper can effectively fuse two different types of data and obtain more realistic community detection results.Besides,it can avoid large differences in data quality between different viewing angles and keep the result stable.
作者 马晓峰 宋晓峰 范超 耿君锋 MA Xiaofeng;SONG Xiaofeng;FAN Chao;GENG JunFeng(Information Engineering University,Zhengzhou 450001,China;School of Information and Communication,National University of Defense Technology,Xi'an 710106,China;State Key Laboratory of Mathematical Engineering and Advanced Computing,Zhengzhou 450001,China)
出处 《信息工程大学学报》 2019年第1期75-81,共7页 Journal of Information Engineering University
关键词 社区检测 多视角 非负矩阵分解 图模型 community detection multi-view NMF graph model
  • 相关文献

参考文献2

二级参考文献34

  • 1燕飞,张铭,谭裕韦,唐建,邓志鸿.综合社会行动者兴趣和网络拓扑的社区发现方法.计算机研究与发展,2010,47:357—362.
  • 2Lira KH, Datta A. Following the follower: Detecting communities with common interests on Twitter. In: Proc. of the 23rd ACM Conf. on Hypertext and Social Media. New York: ACM Press, 2012. 317-318. [doi: 10.1145/2309996.2310052].
  • 3Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, 2007,58 (7): 1019-1031. Idol: 10.1002/asi.20591 ].
  • 4Dourisboure Y, Geraci F, Pellegrini M. Extraction and classification of dense communities in the Web. In: Proc. of the 16th Int'l Conf. on World Wide Web. New York: ACM Press, 2007. 461-470. [doi: 10.1145/1242572.1242635].
  • 5Tang L, Wang X, Liu HF. Uncoverning groups via heterogeneous interaction analysis. In: Proc. of the Ninth IEEE Int'l Conf. on Data Mining. Miami: IEEE, 2009. 503-512. Idol: 10.1109/ICDM].
  • 6Asur S, Parthasarathy S, Ucar D. An event-based framework for characterizing the evolutionary behavior of interaction graphs. ACM Trans. on Knowledge Discovery from Data (TKDD), 2009,3(4):16. [doi: 10.1145/1281192.128129].
  • 7Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing. In: Proc. of the 8th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2002.61-70. [doi: 10.1145/775047.775057].
  • 8Kaplan AM, Haenlein M. Two hearts in three-quarter time: How to waltz the social media/viral marketing dance. Business Horizons, 2011,54(3):253-263. [doi: 10.1016/j.bushor.2011.01.006].
  • 9Larsson AO, Moe H. Studying political microblogging: Twitter users in the 2010 Swedish election campaign. New Media & Society, 2012,14(5):729-747. [doi: 10.1177/1461444811422894].
  • 10Lim KH, Datta A. Finding twitter communities with common interests using following links of celebrities. In: Proc. of the 3rd lnt'l Workshop on Modeling Social Media. New York: ACM Press, 2012.25-32, [doi: 10.1145/2310057.2310064].

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部