期刊文献+

基于LSTM网络的异常操作行为检测方法 被引量:1

Abnormal Operation Behavior Detection Method Based on LSTM
下载PDF
导出
摘要 身份盗用攻击是指攻击者通过盗取可伪造用户的合法证书,在网络中进行修改权限、篡改配置信息、盗取重要数据等攻击行为。由于此类攻击行为不会在网络中产生明显痕迹,传统入侵检测方难以进行有效检测和预警。提出一种基于LSTM的检测方法,该方法通过分析行为间的序列关系,定义了行为模式的基本形式,并挖掘攻击者与正常用户在行为模式中的差异。在此基础上,将原始数据处理为一种既可以表现行为差异,又可以描述行为模式序列性的特征数据,然后使用LSTM网络对特征数据进行学习,对下一行为进行预测,最终通过概率差检测异常操作行为。实验证明该检测方法优于前人方法。 Identity theft attack refers to an attacker attacking the falsified user’s legal certificate to modifily the privilege,tamper with configuration information and steal important data in the network.Since such attacks do not produce obvious traces in the network,it is difficult for traditional intrusion detectors to effectively detect and warn.This paper proposes an LSTM-based detection method.By analyzing the sequence relationship between behaviors,this method defines the basic form of behavior patterns and mines the differences between attackers and normal users in behavior patterns.On this basis,the raw data is processed into a feature data that can express behavioral differences and describe the sequence of behavior patterns.Then,the LSTM network is used to learn the feature data,predict the next behavior,and finally detect abnormal operation behavior by the probability difference.Experiments show that the detection method is superior to the previous methods.
作者 成双 郭渊博 CHENG Shuang;GUO Yuanbo(Information Engineering University,Zhengzhou 450001,China)
机构地区 信息工程大学
出处 《信息工程大学学报》 2019年第1期122-128,共7页 Journal of Information Engineering University
关键词 LSTM 异常行为 行为模式 LSTM abnormal behavior behavior pattern
  • 相关文献

参考文献4

二级参考文献152

  • 1田新广,高立志,张尔扬.新的基于机器学习的入侵检测方法[J].通信学报,2006,27(6):108-114. 被引量:15
  • 2田新广,孙春来,段洣毅,钱小军,邱志明.基于机器学习的用户行为异常检测模型[J].计算机工程与应用,2006,42(19):101-103. 被引量:8
  • 3Smaha S E. Haystack: An intrusion detection system[ A]. Proceedings of the IEEE forth Aerospace Computer Security Appli- cations Conference[ C ]. Austin, Texas: Tracor Applied Science Inc, 1988.37 - 44.
  • 4Wu H C, Huang S H S. User behavior analysis in masquerade detection using principal component analysis [A ]. Proceedings of the 2008 Eighth International Conference on Intelligent Systems Design and Applications[ C]. Washington DC, USA: IEEE Computer Society, 2008. 201 - 206.
  • 5Shim C Y, Kim J Y, Gantenbein R E. Practical user identification for masquerade detection[ A ]. Advances in Electrical and Electronics Engineering-IAENG Special Edition of the World Congress on Engineering and Computer Science 2008[ C 1. San Francisco, California, USA: IEEE Press, 2008.47 - 51.
  • 6Tian X G,Gao L Z,Sun C L, et al.A method for anomaly detection of user behaviors based on machine learning [ J ]. The Journal of China Universities of Post and Telecommunications, 2006,13(2) :61 - 65,78.
  • 7Dash S K, Reddy K S, Pujari A K. Adaptive Naive Bayes method for masquerade detection[J].Security and Communication Networks,2010, DOI: 10. 1002/sec. 168.
  • 8CouU S E,Branch J W,Szymanski B K, et al. Sequence alignment for masquerade detection [J].Computational Statistics & Data Analysis,2008,52(8) :4116 - 4131.
  • 9Maxion R A, Townsend T N. Masquerade detection using truncated command lines[A]. Proceedings of the International Conference on Dependable Systems and Networks [ C ]. Los Alamitos, California: IEEE Computer Society, 2002. 219 - 228.
  • 10Lane T.Machine Learning Techniques for The Computer Security Domain of Anomaly Detection [ D ]. West Lafayette: Purdue University,2000.

共引文献45

同被引文献7

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部