摘要
计算机目标识别技术在智慧港口建设中有广泛需求和应用,本文提出一种基于深度卷积神经网络的集装箱箱门及铅封识别方法,该方法充分利用卷积神经网络自身的频率选择特性以及产生平移、旋转、缩放不变性特征的能力,对卷积网络中间层的深度表征进行分析,提取与检测目标相关的特征图子集。通过对特征子集进行组合,产生能够检测目标的显著性分布特征图,并设计相应的目标函数。最后通过实验,对集装箱箱门、铅封等相关目标进行检测,取得良好效果,验证了该方法的有效性。
Computer target recognition technology has a wide range of needs and applications in the construction of smart ports.This paper proposes a container door and seal identification method based on deep convolutional neural network,which makes full use of the frequency selection characteristics of convolutional neural networks.And the ability to generate translation,rotation,and scaling invariant features,analyze the depth representation of the intermediate layer of the convolutional network,and extract a subset of the feature maps associated with the detection target.By combining the feature subsets,a feature map of the significance distribution that can detect the target is generated,and the corresponding objective function is designed.Finally,through experiments,the container door,seal and other related targets were tested,and good results were obtained.The effectiveness of the method was verified.
作者
杨杰敏
郭保琪
罗汉江
林建成
YANG Jie-Min;GUO Bao-Qi;LUO Han-Jiang;LIN Jian-Cheng(Ocean University of China,Qingdao 266100,China;Qingdao New Qianwan Container Terminal Limited Liability Public Department,Qingdao 266500,China;Qingdao Haida Nova Software Consulting Co.,Ltd.,Qingdao 266500,China;School of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
出处
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第12期134-140,共7页
Periodical of Ocean University of China
基金
国家重点基础研究发展计划项目“智慧物流管理与智能服务关键技术”资助~~
关键词
目标检测
深度卷积网络
集装箱箱门检测
target detection
deep convolutional network
container door detection