期刊文献+

Global and Bifurcation Analysis of an HIV Pathogenesis Model with Saturated Reverse Function

Global and Bifurcation Analysis of an HIV Pathogenesis Model with Saturated Reverse Function
下载PDF
导出
摘要 In this paper,an HIV dynamics model with the proliferation of CD4 T cells is proposed.The authors consider nonnegativity,boundedness,global asymptotic stability of the solutions and bifurcation properties of the steady states.It is proved that the virus is cleared from the host under some conditions if the basic reproduction number R0 is less than unity.Meanwhile,the model exhibits the phenomenon of backward bifurcation.We also obtain one equilibrium is semi-stable by using center manifold theory.It is proved that the endemic equilibrium is globally asymptotically stable under some conditions if R0 is greater than unity.It also is proved that the model undergoes Hopf bifurcation from the endemic equilibrium under some conditions.It is novelty that the model exhibits two famous bifurcations,backward bifurcation and Hopf bifurcation.The model is extended to incorporate the specific Cytotoxic T Lymphocytes(CTLs)immune response.Stabilities of equilibria and Hopf bifurcation are considered accordingly.In addition,some numerical simulations for justifying the theoretical analysis results are also given in paper. In this paper, an HIV dynamics model with the proliferation of CD4 T cells is proposed. The authors consider nonnegativity, boundedness, global asymptotic stability of the solutions and bifurcation properties of the steady states. It is proved that the virus is cleared from the host under some conditions if the basic reproduction number R0 is less than unity. Meanwhile, the model exhibits the phenomenon of backward bifurcation. We also obtain one equilibrium is semi-stable by using center manifold theory. It is proved that the endemic equilibrium is globally asymptotically stable under some conditions if R0 is greater than unity. It also is proved that the model undergoes Hopf bifurcation from the endemic equilibrium under some conditions. It is novelty that the model exhibits two famous bifurcations,backward bifurcation and Hopf bifurcation. The model is extended to incorporate the specific Cytotoxic T Lymphocytes(CTLs) immune response. Stabilities of equilibria and Hopf bifurcation are considered accordingly. In addition, some numerical simulations for justifying the theoretical analysis results are also given in paper.
出处 《Communications in Mathematical Research》 CSCD 2019年第4期301-317,共17页 数学研究通讯(英文版)
基金 The Teacher Research Capacity Promotion Program of Beijing Normal University Zhuhai the NSF(11871108)of China
关键词 HIV model GLOBAL asymptotical stability center manifold theory HOPF BIFURCATION BACKWARD BIFURCATION HIV model global asymptotical stability center manifold theory Hopf bifurcation backward bifurcation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部