期刊文献+

变分与无限维系统的高精度辛格式 被引量:4

VARIATION AND HIGH ORDER ACCURACY SYMPLECTIC SCHEME FOR INFINITE DIMENSIONAL SYSTEM
原文传递
导出
摘要 1.引 言 冯康和他的研究小组提出的生成函数法[1]系统地解决了象二体问题这样地有限维Hamil-ton系统辛算法的构造问题,该方法也可以自然地推广到无限维Hamilton系统[2].首先在空间方向进行离散,例如采用差分或谱离散,得到有限维Hamilton系统,然后再采用生成函数法离散该系统.这样得到的辛格式是整个一层的格式,对于研究格式的局部性质如多辛性质[3],局部能量守恒性质[5]就相当困难. In this paper, we present a new method to construct the symplectic schemes by the third type generating functions [1] for infinite dimension Hamilton system. After overcoming successfully the essential difficult on the calculus of high order variations, we get the semi-discretization with arbitrary order of accuracy in time direction for the PDEs. Furthermore the related modified equations of original equation are obtained from the semi-discretization. Numerical results on collision of solitons are also presented to show the effectiveness of the scheme.
出处 《计算数学》 CSCD 北大核心 2002年第4期431-436,共6页 Mathematica Numerica Sinica
基金 中科院知识创新工程(KZCX2-208) 国家重点实验室项目(40023001) 国家重点基础研究发展规划(1999032801)资助.
关键词 无穷维HAMILTON系统 高阶辛格式 变分 infinite dimension, symplectic schemes, variation
  • 相关文献

参考文献5

  • 1[1]K. Feng and M. Z. Qin, The symplectic methods for the computation of Hamiltonian equations, In Zhu Y L and Guo Ben-Yu, ed, Proc Conf on Numerical Methods for PDEs, Berlin:Springer, 1987, 1-37, Lecture notes in Math, 1997.
  • 2[2]C.W. Li and M.Z. Qin, A symplectic difference scheme for infinite dimensional, JCM, 6:2 (1998), 164-174.
  • 3[3]J.E. Marsden, G.P. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and Nonlinear PDEs, Comm. Math. Phys, 199 (1998), 351-395.
  • 4[4]J. E. Marsden and T.S. Ratin, Introduction of Mechanics and symmetry, 1994, Springer-Verlag, New York.
  • 5[5]S. LI and L. VU-QUOC, Finite difference calculus invariant structure of a class algorithms for the nonlinear Klein Gordon equation, SIAM J. Numer. Anal., 32: 6 (1995), 1839-1875.

同被引文献26

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部