期刊文献+

代数曲线上的Hadamard定理 被引量:1

A Hadamard Theorem on Algebraic Curves
原文传递
导出
摘要 本文在紧Riemann曲面上引入了拟距离函数和圆环域的概念,并给出了这种圆环域上的Hadamard定理. Abstract By introducing a pseudo-distance function on compact Riemann surfaces, we give a new type of Hadamard theorem.
作者 王世坤 赵迪
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第6期1051-1056,共6页 Acta Mathematica Sinica:Chinese Series
基金 973项目 国家自然科学基金资助项目(19875076)
关键词 代数曲线 HADAMARD定理 同伦基 Abel微分 周期矩阵 Homology basis Abelian differentials Period matrix
  • 相关文献

参考文献4

  • 1Farkas H. K., Kra I., Riemann Surfaces, New York: Springer, 1992.
  • 2Wu H. X., Lu Y. N., Chen Z. H., Infroduction for Compact Riemann Surfaces, Beijing: Science Press, 1983 (in Chinese).
  • 3Griffiths P. A., Algebraic Curves, Beijing: Beijing University Press, 1985.
  • 4Forster, Otto, Lectures on Riemann surfaces, New York: Springer, 1981.

同被引文献2

  • 1Hui Ping ZHANG.The Hadamard Theorem and Borel-Carathéodory Theorem on Riemann Surfaces[J].Acta Mathematica Sinica,English Series,2006,22(3):945-950. 被引量:1
  • 2An Ping LIAO,Zhong Zhi BAI Department of Mathematics. Hunan University. Changshu, 410082. P. R. China Department of Mathematics and Information Science, Changsha University, Changsha 410003. P. R. China Academy of Mathematics and System. Sciences. Chinese Academy of Sciences. Beijing 100080. P. R. China State Key Laboratory of Scientific/Engineering Computing. Chinese Academy of Sciences. Institute of Computational Mathematics and Scientific/Engineering Computing. Academy of Mathematics and System Sciences. Chinese Academy of Sciences. P. O. Box 2719. Beijing 100080. P. R. China.The Constrained Solutions of Two Matrix Equations[J].Acta Mathematica Sinica,English Series,2002,18(4):671-678. 被引量:41

引证文献1

  • 1WANG ShiKun~1 ZHANG HuiPing~(2+) 1 KLMM and IAM,AMSS,Chinese Academy of Sciences,Beijing 100080,China,2 School of Information,Renmin University of China,Beijing 100872,China.An application of the Riemann-Roch theorem[J].Science China Mathematics,2008,51(4):765-772.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部