摘要
本文讨论不等式约束规划问题,给出一个线性方程组与辅助方向相结合的新可行算法,算法用一种新型的直线搜索产生步长.在一定条件下,当k充分大后,求方向dk每次只需解一个线性方程组.文中证明了算法的全局收敛性与超线性的收敛速度以及二次收敛性,并给出了方法初步的数值试验.
Abstract In this paper, inequality constrained programming problems are discussed, based on a combination technique of a system of linear equations and an auxiliary direction, a new feasible algorithm is presented, where the step size is found by a new line search. Under suitable conditions, only one system of linear equations needs to be solved for finding the direction dk when k is large enough. The algorithm isproved to possess global convergence, rate of superlinear convergence and quadratical convergence. Some preliminary numerical results are reported.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2002年第6期1137-1146,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(19801009)
广西自然科学基金(9811023)
桂料基(0236001)资助项目
关键词
超线性
二次收敛
序列方程组
可行方法
不等式约束
非线性规划
Inequality constraints
Nonlinear programming
Sequential system of equa-tions
Superlinear and quadratical convergence