期刊文献+

导数光谱-支撑向量回归法同时测定NO_3^-和NO_2^- 被引量:8

Derivative spectrum simultaneous determination of NO_3^- - NO_2^- by SVR method
原文传递
导出
摘要 分析化学中传统的多元校正通常采用线性回归或人工神经网络算法。但线性回归不能适应实测数据或多或少的非线性,而人工神经网络又有过拟合弊病造成误差。为此我们提出用新发展的既能处理非线性数据,又能限制过拟合的支持向量机算法。本文首次提出导数光谱-支持向量回归法。该法用于NO_3^--NO_2^-体系的同时测定解得的浓度平均相对误差在±82%,明显好于ANN法(±9.15%)和线性回归法(±11.5%)。这表明支持向量机算法在分析化学的校正技术中是有用的。 Linear regression and artificial neural network are usually used in the multivariate calibration work in analytical chemistry. But linear regression is difficult to fit the nonlinearity of experimental data, while ANN method often exhibits overfitting. Both of these problems may lead to errors in computation. Therefore, a new method, support vector regression, which can fit nonlinear data and can depress overfitting at the same time, is first applied to multivariate calibration for derivative spectrum of NO3- - NO2- system. The relative analyzing errors are within ± 8.2% . It is lower than the error by ANN( ±9.15%) or linear regression( ±11.5%). So it appears that this new method is useful for calibration work in analytical chemistry.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2002年第6期752-754,共3页 Computers and Applied Chemistry
基金 国家自然科学基金(20175013) 上海市高校科技发展基金(01A17)
关键词 导数光谱 同时测定 NO^-3 NO^-2 支持向量回归 多变量校正 硝酸根 亚硝酸根 分析化学 support vector regression multivariate calibration NO3- - NO2-
  • 引文网络
  • 相关文献

参考文献1

二级参考文献2

共引文献12

同被引文献112

引证文献8

二级引证文献93

;
使用帮助 返回顶部