期刊文献+

钢解理断裂应力的测量和物理意义 被引量:4

ON THE MEASUREMENT AND PHYSICAL MEANING OF THE CLEAVAGE FRACTURE STRESS IN STEEL
下载PDF
导出
摘要 用二维平面应变有限元计算了不同尺寸四点弯曲 ( 4PB)缺口试样缺口前的应力分布。通过测量解理起裂源的位置 ,精确测定了一种钢的细观解理断裂应力σf 和宏观解理断裂应力σF。结果表明 ,σF 的测量比σf 更简单和方便 ,σf 的值可以用σF 估计。随试样尺寸的增加 ,σF和σf 的值基本不变 ,σF 的分散性小于σf。稳定的σF 和σf 的下限值可以用比Griffith Owen试样尺寸大的试样测得。σf 可精确用于细观解理断裂机理的分析 ,并表征了钢的本质韧性。建议σF作为一个潜在的工程参数 ,用于钢的解理断裂韧性评价和结构安全设计。 The two dimensional plain strain finite element models are used to analyze the stress distributions ahead of notches of four point bending(4PB) specimens with various sizes of a steel. By measuring the location of the cleavage initiation sites, the local cleavage fracture stress σ f and the macroscopic cleavage stress σ F are accurately measured. The results show that the measurement of σ F is more simple and convenient than that of σ f , and the σ f values could be predicted by the σ F .With increasing specimen sizes, the σ F and σ f remain nearly constant, and the scatter of σ F is lower than that of σ f . The stable lower boundary σ F and σ f values could be obtained by using notched specimens with sizes larger than the Griffith Owen specimen. The σ f could be accurately used for the analysis of fracture micromechanism, and it characterizes intrinsic toughness of steel. The σ F is suggested to be a potential engineering parameter which could be used to assess cleavage fracture toughness of steel and safety of structure design.
出处 《理化检验(物理分册)》 CAS 2002年第10期420-423,437,共5页 Physical Testing and Chemical Analysis(Part A:Physical Testing)
基金 甘肃工业大学科技发展基金资助 (12 10 1)
关键词 测量 解理断裂 应力 有限元 韧性 Cleavage fracture Stress Finite element Toughness Steel
  • 相关文献

参考文献8

  • 1G.Z. Wang,J.H. Chen. Cleavag Fracture Criterion of Low Alloy Steal and Weld Metal in Notched Specimens[J] 1998,International Journal of Fracture(3):269~284
  • 2A. V. Samant,J. J. Lewandowski. Effects of test temperature, grain size, and alloy additions on the cleavage fracture stress of polycrystalline niobium[J] 1997,Metallurgical and Materials Transactions A(2):389~399
  • 3J.H. Chen,G.Z. Wang,C. Yan,H. Ma,L. Zhu. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part III: Local fracture stress σ[J] 1997,International Journal of Fracture(2):139~157
  • 4C. Yan,J. H. Chen,J. Sun,Z. Wang. Critical assessment of the local cleavage stress σ ? * in notch specimens of C-Mn steel[J] 1993,Metallurgical Transactions A(6):1381~1389
  • 5J. H. Chen,C. Yan. A comparison of toughness of[J] 1992,Metallurgical Transactions A(9):2549~2556
  • 6J. J. Lewandowski,A. W. Thompson. Microstructural effects on the cleavage fracture stress of fully pearlitic eutectoid steel[J] 1986,Metallurgical and Materials Transactions A(10):1769~1786
  • 7R. O. Ritchie,A. W. Thompson. On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys[J] 1985,Metallurgical Transactions A(1):233~248
  • 8R. O. Ritchie,W. L. Server,R. A. Wullaert. Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels[J] 1979,Metallurgical Transactions A(10):1557~1570

同被引文献24

  • 1王国珍,王红,陈剑虹.损伤对低合金钢缺口试样解理断裂韧性的影响[J].理化检验(物理分册),2005,41(2):61-64. 被引量:5
  • 2Wang G Z, Liu G H, Chen J H. Effects of Precracked Specimen Geometry on Local Cleavage Fracture Stressaf of Low Alloy Steel [J]. Int J Frac, 2001,112(2) : 183- 196.
  • 3Couque H, Asaro R J, Dully J, et al. Correlations of Microstructure with Dynamic and Quasi-Static Fracture in a Plain Carbon Steel [J]. Metallurgical Transaction A, 1988,19A(9) : 2179- 2206.
  • 4Lee S H,Rhyu J W,Cho K M,et a1.Dynamic Fracture Initiation Behavior of an HY-100 Steel[J].Metallurgical Transactions,1993,24A(4):901—912.
  • 5Koppenhoefer K C, Dodds R H. Loading Rate Effects on Cleavage Fracture of Pre- cracked CVN Specimens: 3-D Studies [J]. Engineering Fracture Mechanics, 1997,58(3) :249-270.
  • 6Lorentzon M, Eriksson K. Influence of Intermediate Loading Rates and Temperature on the Fracture Toughness of Ordinary Carbon-Manganese Structural Steels [J]. Fatigue & Fracture of Engineering Materials & Structures[J]. 1998,21(5) :805-817.
  • 7Hahn G T. The Influence of Microstructure on Brittle Fracture Toughness [J]. Metallurgical Transactions A, 1984,19A(6) :947-959.
  • 8Wang G Z, Chen J H, Li Z H. Further Study on the Mechanism of the Ductile-to-Brittle Fracture Transition in C-Mn Base and Weld Steel[J]. Metallurgical and Materials Transactions A, 1997,28A (7) : 1689 -1699.
  • 9Kiser M T, Zok F W, Wilkinson D S. Plastic Flow and Fracture of a Particulate Metal Matrix Composite[J]. Acta Mater, 1996,44(12):3465-3476.
  • 10Tohgo K, Fukuhara D, Hadano A. The Influence of Debonding Damage on Fracture Toughness and Crack-tip Field in Glass-particle-reinforced Nylon 66 Composites[J]. Composites Science and Technology, 2001,61(5):1005-1016.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部