摘要
In this letter, a real-time C-V (Characteristic-Vector) clustering algorithm is put forth to treat with vast action data which are dynamically collected from web site. The algorithm cites the concept of C-V to denote characteristic, synchronously it adopts two-value [0,1]input and self-definition vigilance parameter to design clustering-architecture. Vector Degree of Matching (VDM) plays a key role in the clustering algorithm, which determines the magnitude of typical characteristic. Making use of stability analysis, the classifications are confirmed to have reliably hierarchical structure when vigilance parameter shifts from 0.1 to 0.99. This non-linear relation between vigilance parameter and classification upper limit helps mining out representative classifications from net-users according to the actual web resource, then administering system can map them to web resource space to implement the intelligent configuration effectually and rapidly.
In this letter, a real-time C-V (Characteristic-Vector) clustering algorithm is put forth to treat with vast action data which are dynamically collected from web site. The algorithm cites the concept of C-V to denote characteristic, synchronously it adopts two-value [0,1] input and self-definition vigilance parameter to design clustering-architecture. Vector Degree of Matching (VDM) plays a key role in the clustering algorithm, which determines the magnitude of typical characteristic. Making use of stability analysis, the classifications are confirmed to have reliably hierarchical structure when vigilance parameter shifts from 0.1 to 0.99. This non-linear relation between vigilance parameter and classification upper limit helps mining out representative classifications from net-users according to the actual web resource, then administering system can map them to web resource space to implement the intelligent configuration effectually and rapidly.
基金
Supported by 973 National R&D Items(G1998030413)and Centurial Project of CAS