摘要
用电子能量损失谱(EELS)研究了金刚石膜、类金刚石膜和高取向石墨的特征能量损失峰.金刚石膜的特征峰主要是5.4eV和15eV的带间跃迁,23eV和34eV的表面等离子激元和体等离子激元.类金刚石膜的特征峰主要是 4.5eV的π电子的体等离子激元,13eV的带间跃迁,22.4eV的(π+ σ)电子的体等离子激元.石墨的特征峰主要是6eV的π电子的等离子激元,13eV带间跃迁和C轴方向等离子激元,20eV的C轴方向的等离子激元和25.6eV的基面等离子激元.比较了α-C和α-C:H能量损失谱和喇曼光谱,利用hω_(p(π+σ))和hω_(p(x))峰位计算了类金刚石膜中sp^3键和sp^2键的比例.研究了不同CH_4浓度生长的金刚石膜的能量损失谱,利用hω_(p(π+σ))和hω_(p(x))峰位计算金刚石膜中类金刚石第二相内的sp^2键和sp^3键的比例,利用第二相的体等离子激元损失峰hω_(p(π+σ))与金刚石的体等离子激元损失峰hω_(p(σ))的强度比来估价第二相的多少.
Electron energy-loss spectroscopy (EELS) has been applied to the analysis of diamond films(DF), diamond-like films (DLC), and graphite. The main energy-loss peaks for DF are thesurface and bulk plasmon energy losses at 23 eV and 34 eV. respectively, and the interband tran-sitions at 5.4 eV. The characteristic energy loss features of DLC are π and (π+σ) electronbulk plasmon energy losses at 4.5 eV and 22.4 eV respectively, and interband transition of13 eV. The energy loss peaks for graphite are the π electron plasmon energy loss at 6 eV, in-terband transition and C-axis plasmon at 13 eV, and energy losses at 20 eV and 25.6 eV causedby C-axis plasmon and plasmon in the basal plane, respectively. The EELS and Raman spec-tram of DLC with H have been compared with that of DLC without H. The ratios of sp^3 tosp^2 carbon sites in DLC both with and without H, and in the second phase DLC of diamondfilms have been calculated according to the π and (π+σ) electron plasmon energy losses.The ratios of the intensity of hω_p (π+σ) loss peak to that of hω_p(σ) loss peak have been usedto estimate the relative content of the second phase DLC in diamond films.