摘要
证明了w- 投射的w -模一定是自反模 ,得到在PVMD上每个有限型的w- 模都是自反模 .并证明了弱整体维数有限的凝聚整环一定是PVMD ,且其中的素w- 理想一定是平坦模 .同时 ,还建立w -operation的两个实现定理 ,即若R是SM整环 ,则R{X}是Noether整环 ;F是w 投射R 模 ,则F{X}是投射R{X} 模 .
In this paper, we show that every w-projective w-module is reflexive, moreover, every finite type w-module over a PVMD is reflexive. We also prove that a coherent domain with finite weak dimension is a PVMD in which every prime w-ideal is flat. Further, we obtain two representations of w-operation:if R is an SM domain, then R{X} is noetherian, and if F is w-projective as an R-module, then F{X} is projective as an R{X}-module.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2002年第6期557-562,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金资助项目 (10 2 710 5 2 )~~