期刊文献+

Neural network for mass reconstruction of resonance particle with missing energy

Neural network for mass reconstruction of resonance particle with missing energy
下载PDF
导出
摘要 NeuralnetworkformassreconstructionofresonanceparticlewithmissingenergyZhangZi-Ping(张子平)(DepartmentofModernPhysics,Universityo... Neural Network can be designed to reconstruct the mass of resonance particle with large missing energy. Taking the Higgs particle search through decaying channel H°→τ+τ-→eμx and H°→W+W- (ZZ)→ llvv at LHC collider (=16 TeV) as examples,neural network correctly reconstructs its mass with right peak position and better width than conventional method. The network also possesses the capability of suppressing background events. This kind of neural network can be widely used in new particle search and precise mass measurement of resonance particle.
作者 张子平
出处 《Nuclear Science and Techniques》 SCIE CAS CSCD 1996年第2期65-68,共4页 核技术(英文)
关键词 高能物理 共振粒子 质量重构 人工神经网络 Neural network,Mass reconstruction,Resonance particles, Higgs search
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部