摘要
本文推导出相联于3×3谱问题的非线性发展方程的五个分系,我们证明了这五个分系的四个都是Liouville可积的,其中一个是纯粹的微分方程,我们还得到了这五分系的Lax算子,并且考虑了相关的算子代数。
In this paper, five hierarchies of the nonlinear evolution equations associated with a 3×3 spectral problem are derived, we prove that four sets of the hierarchies associated with isospectral deformations of the spectral problem are all Liouville integrable, among them one hierarchy. is proved to be pure differential equations. The Lax operators for the five sets of hierarchy are also given and the relevent operator algebra is considered.
出处
《北京大学学报(自然科学版)》
CAS
CSCD
北大核心
1992年第1期17-25,共9页
Acta Scientiarum Naturalium Universitatis Pekinensis
关键词
可积方程
谱
Lax算子
算子代数
Integrable equations
Spectral problem
Evolution equations
Lax opera-tors
Operator algebra