摘要
在新型势能率密度与余能率密度的数学形式和非线性几何方程的基础上,利用拉氏乘子法建立了两种三类独立变量函数的广义泛函及其广义变分原理,利用匹配原则和规一化方法,基于两种三类独立变量函数的广义变分原理,推导出一系列新型二类变量函数的广义泛函及其广义变分原理,这些变分原理为近似求解和数值求解蠕变流动理论中的几何非线性问题提供了理论基础。
Based on new forms of the densities of potential and complementary energy rate and non linear geometrical equations,two kinds of the generalized functionals and the generlized variational principles belonging to three-kind argument functions were established with lagrange multiplier method.Making use of match principle in combinatoriecs and normalization method,we have derived the new forms of the funtionals and variational principles belonging to two independent argument functions.These generalized variational principles are the fundamentals for approximate computation and numerical analysis of engineering structure in the deformation theory of creep.
出处
《北京工业大学学报》
CAS
CSCD
1992年第1期1-10,共10页
Journal of Beijing University of Technology
关键词
广义变分原理
蠕变
蠕流
generalized variational principle,Non- linear problem of geometries logrange multiplier method,normalization method