期刊文献+

Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China 被引量:3

Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China
原文传递
导出
摘要 Scientific irrigation and nitrogen management is important for agricultural production in arid areas. To quantify the effect of water and nitrogen management on yield components, biomass partitioning and harvest index(HI) of maize for seed production with plastic filmmulching, field experiments including different irrigation and N treatments were conducted in arid north-west China in 2013 and 2014. The results indicated that kernel number per plant(KN) was signi ficantly affected by irrigation and N treatments. However, 100-kernel weight was relatively stable. Reducing irrigation quantity signi ficantly increased stem partitioning index(PI_(stem)) and leaf partitioning index(PIl_(eaf)), and decreased ear partitioning index(PI_(ear)) at harvest, but lowering Nrate(from 500 to 100 kg N$hm^(–2))did not signi ficantly reduce PI_(stem), PI leaf, andPIl_(eaf) at harvest. HI was signi ficantly reduced by reducing irrigation quantity, but not by reducing Nrate. Linear relationships were found between KN, PI_(stem), PI leaf,PIl_(eaf) at harvest and HI and evapotranspiration(ET). Scientific irrigation and nitrogen management is important for agricultural production in arid areas. To quantify the effect of water and nitrogen management on yield components, biomass partitioning and harvest index (HI) of maize for seed production with plastic film-mulching, field experiments including different irrigation and N treatments were conducted in arid north-west China in 2013 and 2014. The results indicated that kernel number per plant (KN) was significantly affected by irrigation and N treatments. However, 100-kernel weight was relatively stable. Reducing irrigation quantity significantly increased stem partitioning index (PIstem) and leaf partitioning index (PIleaf), and decreased ear partitioning index (PIear) at harvest, but lowering N rate (from 500 to 100 kg N.hm(-2)) did not significantly reduce PIstem, PIleaf, and PIear at harvest. HI was significantly reduced by reducing irrigation quantity, but not by reducing N rate. Linear relationships were found between KN, PIstem, PIleaf, PIear at harvest and HI and evapotranspiration (ET).
出处 《Frontiers of Agricultural Science and Engineering》 2016年第1期55-64,共10页 农业科学与工程前沿(英文版)
基金 supported by the National Natural Science Foundation of China (91425302, 51321001, 51379208) the Discipline Innovative Engineering Plan (B14002)
关键词 yield components biomass partitioning harvest index IRRIGATION NITROGEN maize for seed production yield components biomass partitioning harvest index irrigation nitrogen maize for seed production
  • 相关文献

同被引文献16

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部