摘要
Puccinellia tenuiflora is a typical salt-excluding halophytic grass with strong salt-tolerance, which enhances tolerance by restricting Na^+influx as well as having a strong selectivity for K^+ over Na^+. The HAK5 K^+ transporters generally modulate effective K^+acquisition in plants, especially under low K^+ condition. In this study,Pt HAK5 from P. tenuiflora was isolated by RT-PCR and characterized using yeast complementation. The results showed Pt HAK5 consisted of 784 amino acids and shared over 80% homology with the identified high-affinity K^+ transporter HAK5 from other higher plants. The expression of PtHAK5 rescued the K^+ -uptake-defective phenotype of yeast strain CY162. In conclusion, PtHAK5 is a candidate for mediating high-affinity K^+ uptake under low K^+ conditions.
Puccinellia tenuiflora is a typical salt-excluding halophytic grass with strong salt-tolerance, which enhances tolerance by restricting Na^+influx as well as having a strong selectivity for K^+ over Na^+. The HAK5 K^+ transporters generally modulate effective K^+acquisition in plants, especially under low K^+ condition. In this study,Pt HAK5 from P. tenuiflora was isolated by RT-PCR and characterized using yeast complementation. The results showed Pt HAK5 consisted of 784 amino acids and shared over 80% homology with the identified high-affinity K^+ transporter HAK5 from other higher plants. The expression of PtHAK5 rescued the K^+ -uptake-defective phenotype of yeast strain CY162. In conclusion, PtHAK5 is a candidate for mediating high-affinity K^+ uptake under low K^+ conditions.
基金
supported by the National Natural Science Foundation of China (31730093, 31470503)