摘要
为进一步提高布谷鸟搜索算法(Cuckoo Search)的收敛速度和计算精度,将PSO算法用于CS算法的位置更新过程,提出了基于PSO算法的布谷鸟搜索算法(CSPSO).最后,通过6个典型测试函数进行仿真实验.结果表明,CSPSO算法比CS算法和自适应步长布谷鸟搜索算法(ASCS)具有更快的收敛速度,更高的收敛精度和稳定性.
In order to make further improvement on the convergence speed and computational accuracy of cuckoo search algorithm ,a new cuckoo search algorithm based on particle swarm optimization algorithm is propased ,which uses particle swarm optimization instead of the original Levy flight mechanism into the location update process of CS algorithm .The simulation results show that the CSPSO can search for global optimization more quickly ,precisely and stably than original CS algorithm and self-adaptive step cuckoo search algorithm .
出处
《纺织高校基础科学学报》
CAS
2014年第3期374-379,384,共7页
Basic Sciences Journal of Textile Universities
基金
陕西省软科学基金项目(2012KRM58)
陕西省教育厅自然科学基金项目(11JK0188)
关键词
布谷鸟搜索
Levy飞行
粒子群优化算法
cuckoo search algorithm
Levy flight
particle swarm optimization algorithm