期刊文献+

容许多项式子空间的四阶非线性平方算子的分类

Classification of fourth-order nonlinear quadratic operators admitting polynomial subspaces
下载PDF
导出
摘要 利用不变子空间方法研究四阶非线性平方算子,确定出四阶非线性平方算子在其所容许的多项式不变子空间中的完全分类,进一步求出相应方程的爆破解.所得结果推广了不变子空间理论在非线性偏微分方程中的应用. By using invariant subspace method ,the fourth‐order nonlinear quadratic operators is studied .The full classifications of polynomial invariant subspace preserved by the fourth‐order quadratic operators are derived .Moreover ,some explicit solutions to the resulting evolution e‐quations with fourth‐order nonlinear quadratic operators are constructed .The obtaining results further extend the applications of invariant subspace theory in the PDEs .
作者 屈改珠
出处 《纺织高校基础科学学报》 CAS 2015年第2期214-217,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11371293) 陕西省教育厅专项基金资助项目(14JK1246) 陕西省扶持学科数学学科基金项目(14SXZD015) 渭南师范学院校级特色学科建设项目(14TSXK02) 渭南师范学院理工类科研项目(15YKS005)
关键词 不变子空间 四阶非线性平方算子 广义分离变量解 invariant subspace fourth-order nonlinear quadratic operators generalized separation of variables solution
  • 相关文献

参考文献9

  • 1R.Z. Zhdanov.Conditional Lie-B\"acklund symmetry and reduction of evolution equations. J. Phys. A, Math. Gen . 1995
  • 2Changzheng Qu,Chunrong Zhu.Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method. J. Phys. A, Math. Theor . 2009
  • 3Victor A. Galaktionov.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics . 1995
  • 4A.S. Fokas,Q.M. Liu.Nonlinear interaction of traveling waves of nonintegrable equations. Physical Review Letters . 1994
  • 5Changzheng Qu.Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Studies in Applied Mathematics . 1997
  • 6GALAKTIONOV V A,SVIRSHCHEVSKII S R.Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics. . 2007
  • 7高晓琴,谢离丽.一类拟线性方程三角形式不变子空间的研究[J].纺织高校基础科学学报,2012,25(1):48-50. 被引量:1
  • 8MA Wen-Xiu.A refined invariant subspace method and applications to evolution equations[J].Science China Mathematics,2012,55(9):1769-1778. 被引量:21
  • 9左苏丽,黄晴,王丽真,李吉娜.非线性扩散方程和不变子空间[J].西北大学学报(自然科学版),2011,41(1):5-7. 被引量:1

二级参考文献19

  • 1唐亚宁,徐伟,李伟.推广的BBM方程行波解[J].西北大学学报(自然科学版),2006,36(4):525-528. 被引量:5
  • 2BLUMAN G W,KUMEI S.Symmetries and Differential E-quationf M].New York:Springer,1989.
  • 3BLUMAN G W,COLE J D.The general similarity solu-tions of the heat equation[J].J Math Mech,1969,18:1025-1042.
  • 4FOKAS A S,LJU Q M.Generalized conditional symme-tries and exact solution of non-integrable euqaitons[J].Theor Math Phys,1994,99:263-277.
  • 5ZHDANOV R Z.Conditional Lie Backlund symmetry and reduction of evolution equations[J].J Phys A:Math Gen,1995,28:3841-3850.
  • 6QU C Z.Reductions and exact solutions of some nonlinear partial differential equations under four types of general-ized conditional symmetries[J].J Austral Math Soc Ser B,1999,41:1-40.
  • 7GALAKTIONOV V A.Groups of scalings and invariant sets four higher-order nonlinear evolution equation[J].Differential Integeral Equations,2001,14:913-924.
  • 8GALAKTIONOV V A.Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities[J].Proc Roy Soc Edinburgh,Sect A,1995,125:225-246.
  • 9KING J R.Exact polynomial solutions to some nonlinear diffusion equations[J].Physica D,1993,64:35-65.
  • 10DOLYE P W.Separation of variables for scalar evolution equations in one space dimension[J].J Phys A,1996,29:7581-7585.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部