期刊文献+

利用曲率和相关矩阵的角点检测算法 被引量:1

Corner detection with curvature and relation matrix
下载PDF
导出
摘要 为提高定位准确性并抑制噪声,利用多方向Gabor滤波器,提出基于曲率和相关矩阵的角点检测方法.首先利用Canny边缘轮廓检测器提取图像的边缘并填充缺口;其次计算边缘像素点的曲率;然后利用多方向Gabor滤波器的虚部对原始图像进行平滑,对每个边缘像素及其邻域构造相关矩阵,利用相关矩阵的归一化特征值计算角点准则函数,将角点准则函数值与边缘像素点的曲率的乘积做为角点测度;最后利用非极大值抑制对候选角点进行筛选.分别在无噪声和噪声情况下进行实验,结果表明,与Harris,CPDA,He&Yung角点检测算法相比,该方法可以有效地抑制噪声,平均配准角点数提高了19.6%和25.6%,平均定位误差约降低了6.5%和9.2%. In order to improve the positioning accuracy and suppress noise,the corner detection method based on curvature and relation matrix is proposed by using multi-direction Gabor filters.Firstly,Canny edge contour detector is used to extract edge map and fill gaps.Secondly,the curvature of edge pixels is calculate.Then the imaginary parts of Gabor filter is used to smooth the input image and build the relation matrix of edge pixel and its neighbour,the multiplication of the corner criterion function value computed by normalized eigenvalue of relation matrix and the edge pixel′s curvature is served as corner measure.Finally,use the non-maximum suppression to select the candidate corner.The experiment results contained with noiseand noise-free show that the proposed method can suppress noise effectively compared with Harris,CPDA,He&Yung algorithms,and the average matched corner number increases by about 19.6% and 25.6% respectively,and the positioning error reduces by about 6.5% and9.2%,respectively.
出处 《纺织高校基础科学学报》 CAS 2016年第2期262-268,共7页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅科研计划资助项目(14JK1319) 西安工程大学控制科学与工程学科群建设经费资助项目(107090811)
关键词 GABOR滤波器 曲率 相关矩阵 归一化特征值 非极大值抑制 Gabor filter curvature relation matrix normalized eigenvalue non-maximum suppression
  • 相关文献

参考文献19

二级参考文献72

  • 1孟繁杰,郭宝龙.一种基于兴趣点颜色及空间分布的图像检索方法[J].西安电子科技大学学报,2005,32(2):256-259. 被引量:25
  • 2张登荣,刘辅兵,俞乐,蔡志刚,邓超.基于Harris算子的遥感影像自适应特征提取方法[J].国土资源遥感,2006,18(2):35-38. 被引量:15
  • 3赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:85
  • 4刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 5Rahmani R, Goldman S A, Hui Zhang, et al. Localized Content Based Image Retrieval [ C]//Proc of the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval. New York: ACM, 2005: 227-236.
  • 6Zeng Zhiyong, Liu Shigang. A Novel Region-based Image Retrieval Algorithm Using Hybrid Feature[ C]//WRI World Congress on Computer Science and Information Engineering. Los Angeles: IEEE Computer Society, 2009: 416-420.
  • 7Chiang Cheng Chieh, Hung Yi Ping, Yang Hsuan, et al. Region-based Image Retrieval Using Color-size Features of Watershed Regions [ J]. Journal of Visual Communication and Image Representation, 2009, 20(3) : 167-177.
  • 8Wol C, Jolion J, Kropatsch W, et al. Content Based Image Retrieval Using Interest Points and Texture Features[ C]//Proc of 15th International Conference on Pattem Recognition. Barcelona: IAPR, 2000: 234-237.
  • 9Zheng Xia, Zhou Mingquan, Wang Xingce. Interest Point Based Medical Image Retrieval [ C] //Lecture Notes in Computer Science. Beijing: Springer Verlag, 2008: 118-124.
  • 10Jian Muwei, Chen Shi. Image Retrieval Based on Clustering of Salient Points [ C]//Proc of 2008 2nd International Symposium on Intelligent Information Technology Application. Shanghai: Inst of Elec and Elec Eng Computer Society, 2008: 347-351.

共引文献149

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部