期刊文献+

利用油品紫外荧光特性的多光谱成像检测 被引量:7

Multispectral Imaging Detection Using The Ultraviolet Fluorescence Characteristics of Oil
下载PDF
导出
摘要 利用石油及其产品具有的紫外荧光特性,搭建了一套紫外诱导多光谱成像系统。该系统主要由3个紫外诱导光源、8个滤波片和1个彩色CCD相机组成。采集了6种油品的多光谱图像,以有效光斑的24个颜色分量均值作为特征,提出了一种联合熵最大化的独立分量分析特征优化方法。K均值聚类和支持向量机识别结果表明,较改进前的ICA方法,该方法的特征优化性能得到了有效提高,油种识别率达到了92.3%。 Based on the UV fluorescence phenomena of oil and its products, a multispectral imaging system was constructed. This system was composed of 3 UV excitation light sources, 8 optics filters and a CCD camera. Using this system, multi-spectral images of 6 kinds of oil were collected. The mean of 24 color features of effective light spots was used as the feature set. Then, a novel method called maximize the joint entropy of independent component analysis ( ICA ) was proposed for K-mean cluster and SVM recognition. It is proved that this method is better than traditional ICA for feature optimized, and the identification rate is 92. 3%. This result has positive significance for oil detection.
出处 《发光学报》 EI CAS CSCD 北大核心 2015年第11期1335-1341,共7页 Chinese Journal of Luminescence
基金 国家自然科学基金(31201133) 青岛市科技发展计划(14-2-3-52-nsh)资助项目
关键词 紫外诱导 多光谱成像 联合熵独立分量分析 油品检测 UV excitation light multi-spectral imaging joint entropy of independent component analysis oil identification
  • 相关文献

参考文献13

  • 1Bruce E. Hansen.THE INTEGRATED MEAN SQUARED ERROR OF SERIES REGRESSION AND A ROSENTHAL HILBERT-SPACE INEQUALITY[J]. Econometric Theory . 2014 (2)
  • 2Guoqing Wang,Yu-an Sun,Qingzhu Ding,Chunhong Dong,Dexue Fu,Cunhong Li.Estimation of source spectra profiles and simultaneous determination of polycomponent in mixtures from ultraviolet spectra data using kernel independent component analysis and support vector regression[J]. Analytica Chimica Acta . 2007 (1)
  • 3Minjin Kim,Young-Hak Lee,Chonghun Han.Real-time classification of petroleum products using near-infrared spectra[J]. Computers and Chemical Engineering . 2000 (2)
  • 4Chang C C,Lin C J.LIBSVM-a Library for support vector machines. http://www.csie.ntu.edu.tw/-cjlin/libsvm/ .
  • 5Hyvorinen A,Karhunen J,Oja E.Independent Component Analysis. . 2001
  • 6Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis. Neural Computation . 1997
  • 7Bonaccorsi I L,McNair H M,Brunner L A,Dugo P,Dugo G.Fast HPLC for the analysis of oxygen heterocyclic compounds of citrus essential oils. Journal of Agriculture . 1999
  • 8Hahn, Sangjoon,Yoon, Gilwon.Identification of pure component spectra by independent component analysis in glucose prediction based on mid-infrared spectroscopy. Applied Optics . 2006
  • 9John D. Kessler,David L. Valentine,Molly C. Redmond,Mengran Du,Eric W. Chan,Stephanie D. Mendes,Erik W. Quiroz,Christie J. Villanueva,Stephani S. Shusta,Lindsay M. Werra,Shari A. Yvon-Lewis,Thomas C. Web.A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico. Science . 2011
  • 10Francis R. Bach,Michael I. Jordan.Kernel independent component analysis. J. Mach. Learn. Res . 2003

共引文献1

同被引文献58

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部