期刊文献+

衬底温度对共蒸发法制备Cu_2ZnSnSe_4太阳电池的影响

Influence of Substrate Temperature on Cu_2ZnSnSe_4 Thin Film Solar Cells Fabricated by Co-evaporation Process
下载PDF
导出
摘要 采用共蒸发法在不同衬底温度下沉积Cu_2ZnSnSe_4(简称CZTSe)薄膜,分析了衬底温度对CZTSe材料性质及电池性能的影响。研究表明:当衬底温度较低时(380℃),CZTSe薄膜中含有SnSe_x使电池失效;随着衬底温度的升高,CZTSe薄膜的结晶质量明显提升,电池开路电压增加。但当衬底温度达到460℃时,电池的转换效率反而下降;结合CZTSe的生长机理及器件模型分析了电池效率下降可能的原因。最终在衬底温度420℃的条件下制备出效率为3.12%(有效面积0.34 cm^2)的CZTSe太阳电池。 Substrate temperature has very important influences on the performance of Cu2ZnSnSe4(CZTSe) thin film solar cells. In this paper, CZTSe absorbers and solar cells prepared by co-evaporation process at different substrate temperatures are investigated. XRD results show additional reflections of SnSex of films deposited at substrate temperature(380 ℃). SEM measurements reveal that the quality of crystallization of CZTSe films improves with increasing substrate temperatures;meanwhile the open circuit voltage increases due to decreased grain-boundary recombination. However, J-V tests show that the efficiency of CZTSe solar cells fabricated at 460 ℃ is lower. The reason might be that CZTSe film growth starts with the formation of ZnSe at higher substrate temperature(460 ℃). And the ZnSe could form a barrier at the back contact which could reduce the short circuit current and fill factor. The best solar cell with an efficiency of 3.12% is obtained at medium substrate temperature of 420 ℃(active area 0.34 cm2).
作者 孙顶 李玉丽 王凌群 张玉红 刘航 郭秀娟 迟耀丹 张力 SUN Ding;LI Yu-li;WANG Ling-qun;ZHANG Yu-hong;LIU Hang;GUO Xiu-juan;CHI Yao-dan;ZHANG Li(School of Electrical and Computer Engineering,Jilin Jianzhu University,Changchun 130118,China;Institute of Photo Electronics Thin Film Devices and Technology,Nankai University,Tianjin 300071,China)
出处 《发光学报》 EI CAS CSCD 北大核心 2019年第3期334-339,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(61705077) 吉林省教育厅"十三五"科学技术项目(JJKH20180591KJ)资助~~
关键词 太阳电池 铜锌锡硒 共蒸发 温度 solar cells CZTSe co-evaporation temperature
  • 相关文献

参考文献2

二级参考文献28

  • 1Zhang Li, He Qing, Sun Yun, et at. Solar cells deposited on stainless steel substrate. Chinese Journal of Semiconductors, 2006, 27(10): 1781 (in Chinese).
  • 2Todorov T K, Tang J, Bag S, et at. Beyond II % efficiency: characteristics of state-of-the-art CU2ZnSn(S,Se)4 solar cells. Adv Energy Mater, 2013, 3: 34.
  • 3Repins I, Beall C, Vora N, et at. Co-evaporated CU2ZnSnSe4 films and devices. Sol Energy Mater Sol Cells, 2012,101: 154.
  • 4Wang W, Winkler M T, Gunawan 0, et at. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater, 2014, 4(7): 1301465.
  • 5Todorov T, Gunawan 0, Chey S J, et al. Progress towards marketable earth-abundant chalcogenide solar cells. Thin Solid Films, 2011, 21: 7378.
  • 6Jung S H, Gwak J, Yun J H, et at. CU2ZnSnSe4 thin film solar cells based on a single-step co-evaporation. Thin Solid Films, 2013,535: 52.
  • 7Kim K H, Yoon K H, Yun J H, et al. Effects ofSe flux on the microstructure ofCu(ln,Ga)Se2 thin film deposited by a three-stage co-evaporation process. Electrochem Solid-State Lett, 2006, 9: 382.
  • 8Hanna G, Mattheis J, Lapteva Y, et al. Influence of selenium flux on the growth of Cu(ln,Ga)Se2 thin films. Thin Solid Films, 2003, 431/432: 31.
  • 9Kushiya K, Tanaka Y, Hakuma H, et al. Interface control to enhance the fill factor over 0.70 in large-area CIS-based thin-film PY technology. Thin Solid Films, 2009, 517: 2108.
  • 10Redinger A, Siebentritt S. Coevaporation of CU2ZnSnSe4 thin films. Appl Phys Lett, 20 I 0, 97: 092111.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部