摘要
本文讨论了以迁移理论为背景的一类积分-微分型方程,即非均匀介质中具连续能量的无限高圆柱模型的中子迁移方程的求解问题.利用泛函分析的方法,特别是 L_1空间的线性算子理论,得到了方程解的存在性、唯一性和严格的正性.
In this paper,we discuss a class of integrodifferential equations in transport theory,which is the neutron transport equations for a cylinder of in- finite height under assumptions of continuous energy.We consider the problem of finding the solutions to these equations.By using the methods of functional analysis,especially the theory of linear operator in an L_1 space,we obtain the existence,uniqueness and strict positivity of the solution.
基金
北京邮电学院青年科学基金
关键词
柱模型
临界问题
迁移方程
介质
cylindrical geometry
dominant eigenvalue
criticality problems
neutron transport equations
inhomogeneous medium