期刊文献+

基于混沌多项式的火箭弹射击落点散布分析方法

Research on dispersion characteristics analysis of rocket projectile based on polynomial chaos
原文传递
导出
摘要 针对传统的基于统计学的火箭弹射击落点分析方法需要生成大量随机样本用于弹道求解,存在计算量大、耗时长的问题,提出了一种基于混沌多项式理论的火箭弹射击散布特性分析方法。该方法基于火箭弹不确定性弹道动力学模型,采用混沌多项式理论将射击散布分析问题直接转化为确定性多项式系数求解问题,然后采用非嵌入式数值积分方法来确定多项式系数。该方法仅需要在数值积分点上求解弹道方程,从而极大地提高了计算效率。仿真结果表明,所提出的方法在同等精度要求下比蒙特卡洛分析方法具有更高的计算效率,具有很强的工程实用价值。 Aimed at the problems of large computational complexity and time consuming of rocket projectile dispersion characteristics analysis based on statistical analysis,this paper proposed a new method based on PC.Combining the PC and the nondeterministic trajectory model,the method could transform the dispersion characteristics analysis to the problem of solving polynomial coefficient,and obtain the dispersion characteristics using numerical integration.This method just needs to solve the trajectory modelat numerical integral point,which could significantly increase the computational efficiency.The simulation results shows that the method has important practical engineering value because of its higher efficiency in equal precision conditions than monte caro method.
作者 王昂 沙建科 施雨阳 WANG Ang;SHA Jian-ke;SHI Yu-yang(Department of Tactical Weapon General Technology,Sichuan Aerospace System Engineering Institute,Chengdu 610100,China)
出处 《飞行力学》 CSCD 北大核心 2019年第2期61-65,71,共6页 Flight Dynamics
基金 航天技术支撑基金资助(617010102)
关键词 火箭弹 散布特性 混沌多项式 数值积分 rocket projectile dispersion chatacteritics polynomial chaos numerical integration
  • 相关文献

参考文献2

二级参考文献27

  • 1王华,徐军,张芸香.基于Matlab的弹道蒙特卡洛仿真研究[J].弹箭与制导学报,2005,25(S1):181-183. 被引量:19
  • 2金华,戴金海.某异形卷弧翼弹的蒙特卡罗计算机模拟打靶[J].航天控制,2007,25(2):52-57. 被引量:4
  • 3Hanson J M, Beard B B. Applying Monte Carlo simulation to launch vehicle design and requirements verification [Jl- Journal of Spacecraft and Rockets, 2012,49 ( 1 ) : 136-144.
  • 4夏永春,刘足,张伟.基于仿真应用的火炮外弹道研究[c]//2011全国仿真技术学术会议论文集.银川,2011:105-109.
  • 5Li W, Huyse L, Padula S. Robust airfoil optimization to achieve consistent drag reduction over a Mach range. ICASE Report No. 2001-22 , 2001.
  • 6Zhong XP,Ding JF, Li WJ, et al. Robust airfoil optimization with multi-objective estimationof distribution algorithm. Chinese Journal of Aeronautics, 2008, 21(4): 289-295.
  • 7Anile AM, Spinella S, Rinaudo S. Stochastic response surface method and tolerance analysis in microelectronics, COMPEL. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(2): 314-327.
  • 8Tatang MA, Pan W, Prinn RG, et al. An efficient method for parametric uncertainty analysis of numerical geophysical models. Journal of Geophysical Research, 1997, 102(D18): 21925-21932.
  • 9Wiener N. The homogeneous chaos. American Journal of Mathematics, 1938, 60: 897-936.
  • 10Ghanem R, Spanos P. Stochastic Finite Elements: A Spectral Approach. New York: Springer-Verlag, 1991.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部