期刊文献+

水质监测中光谱数据的压缩与重构算法研究 被引量:3

Research on Compression and Reconstruction Algorithm of Spectral Data in Water Quality Monitoring
下载PDF
导出
摘要 针对基于无线传感网络传输的紫外-可见光谱法水质监测光谱数据耗时耗能且传输过程存在丢失数据的关键技术问题,在传统小波变换编码的基础上,依据压缩感知框架下压缩感知之子空间追踪(subspace pursuit,SP)重构算法,将压缩感知理论应用于水质监测的光谱数据分析与处理,实现了对水质监测光谱数据的压缩与重构,提高了紫外-可见光谱法水质监测光谱数据传输过程中的抗干扰能力。实验研究结果表明,在满足测量中对水质监测精度要求的前提下,压缩比可达19.5%。同时,传输过程中可允许25%以内的丢包率,这对压缩感知算法解决水质监测光谱数据的存储和传输过程中数据量大、节点能量消耗以及传输过程中丢失数据等问题,具有一定的潜在应用价值。 For wireless sensor network transmits UV-Vis spectrum wasting time and energy. In addition, there is a loss of data in the process of data transmission. The new algorithm combines SP(subspace pursuit) reconstruction algorithm with the traditional wavelet transform coding is applied to the data analysis, not only implements spectrum data compression and re-construction, but also improves the anti-interference in the process of spectral data transmission. Experimental results show that the premise of compression ratio can reach 19.5% in the meet the requirements of project on water quality monitoring accuracy, and allow the packet loss rate within 25% in the process of transmission. This shows that compressed sensing algorithm for spectral data storage and transmission problems, node energy consumption, and losing of data in the process of the transmission has certain application value.
出处 《环境科学与技术》 CAS CSCD 北大核心 2016年第S1期6-10,共5页 Environmental Science & Technology
基金 国家自然科学基金项目(61201346) 重庆市研究生科研创新项目(CYB14024)
关键词 紫外-可见光谱法 水质监测 无线传输 压缩感知 数据丢失 UV-VIS water quality monitoring WSN compressed sensing data loss
  • 相关文献

参考文献12

  • 1D. Needell,J.A. Tropp.CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis . 2008 (3)
  • 2魏康林,温志渝,武新,张中卫,曾甜玲.基于紫外-可见光谱分析的水质监测技术研究进展[J].光谱学与光谱分析,2011,31(4):1074-1077. 被引量:39
  • 3W. Bajwa,J. Haupt,A. Sayeed,R. Nowak.Joint Source–Channel Communication for Distributed Estimation in Sensor Networks. IEEE Transactions on Information Theory . 2007
  • 4Liu J S.Monte Carlo Strategies in Scientific Computing. . 2001
  • 5Goyal, V.K.,Fletcher, A.K.,Rangan, S.Compressive Sampling and Lossy Compression. Signal Processing . 2008
  • 6TROPP J A;GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit,2007(12).
  • 7David L. Donoho,Yaakov Tsaig,Iddo Drori.Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit. IEEE Transactions on Information Theory . 2012
  • 8DAI W;MILENKOVIC O.Subspace pursuit for compressive sensing signal reconstruction,2009(05).
  • 9Bao Y,Yu Y,Li H,et al.Compressive sensing-based lost data recovery of fast-moving wireless sensing for structural health monitoring. Structural Control and Health Monitoring . 2015
  • 10Babadi, B.,Kalouptsidis, N.,Tarokh, V.Asymptotic Achievability of the Cramér–Rao Bound for Noisy Compressive Sampling. Signal Processing . 2009

二级参考文献19

  • 1Wang Hongyao.Coal mine disaster rescue life sign monitoring technology based on FBG and acceleration sensor [J].Procedia Engineering, 2011, (26): 2294-2300.
  • 2Carlos Rodrigues, Carlos Felix, Armindo Lage, et al..Development of a long-term monitoring system based on FBG sensors applied to concrete bridge [J].Engineering Structures, 2010, (32): 1993-2002.
  • 3W Ecke, M W Schmitt.Fiber Bragg gratings in industrial sensing [C].Optical Fiber Communication Conference, 2013.OM3G.1.
  • 4D L Donoho.Compressed sensing [J].IEEE Trans Inf Theory, 2006, 4(52): 1289-1306.
  • 5Liu Xiaoyong, Cao Yiping, Lu Pei, et al..Optical image encryption technique based on compressed sensing and Arnold transformation [J].Optik, 2013, (124): 6590-6593.
  • 6Avishy Carmi, Pini Gurfil.Sensor selection via compressed sensing [J].Automatica, 2013, 11(49): 3304-3314.
  • 7Macro F Duarte, Yonina C Eldar.Structured compressed sensing: from theory to applications [J].IEEE Transactions on Signal Processing, 2011, 9(59): 4053-4085.
  • 8Eugene C Lin, Stanley J Opella.Covariance spectroscopy in high-resolution multi-dimensional solid-state NMR [J].Journal of Magnetic Resonance, 2013, 239: 40-48.
  • 9Daito Akimura, Yoshihiro Kawahara, Tohru Asami.Compressed sensing method for human activity sensing using mobile phone accelerometers [C].2012 Ninth International Conference on Networked Sensing Systems (INSS), 2012.1-4.
  • 10L W Hong, W Shu.Signal processing, an efficient and robust approach for wideband compressive spectrum sensing [C].2012 IEEE Conference on Signal Processing, Communication and Computing (ICSPCC), 2012.499-502.

共引文献52

同被引文献41

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部