期刊文献+

人工牧草地的氮磷环境及其流出特性的研究 被引量:2

The Nitrogen and Phosphorus Environment and Its Effuent Characteristics in Artificial Tame Pastures.
原文传递
导出
摘要 在农场试验地的调查实验结果表明 ,牧草地土壤全氮和全磷含量主要存在于土表 ,分别为 2 16 0mg/kg和 12 30mg/kg。溶出实验结果发现 ,酸性条件、温度以及时间对土壤中氮、磷的溶出有明显的促进作用。调查同时表明 ,土壤空隙水中氮、磷对地下水水质不会造成显著影响 ;而降雨时地表流出水中全氮的浓度超出环境标准 ,全磷超出环境标准的 8~ 11倍 ,是地表水的潜在污染源之一。 Our investigation and experimental results in a farm showed that the TN and TP mainly exist in the surface of the soil.The concentrations of TN and TP were 2160mg/kg and 1230mg/kg,respectively.Dissolving experimental results indicated that the acidic condition,the temperature as well as the time had obvious promoter action for the nitrogen,and phosphorus dissolving in the soil.Nitrogen and phosphorus in the soil had not remarkable influence to the ground water quality.However,in rainy days,the concentration of TN in the draining water surpassed the environment standard;the TP surpassed the environment standard 8 to 11 times, which is potentially one of the pollution sources for the surface water.
出处 《中国草地》 CSCD 2002年第6期7-12,共6页 Grassland of China
基金 日本河川整治基金财团资助项目
关键词 人工牧草地 流出特性 面源污染 Pastures Nitrogen Phosphorus Non_point source pollution
  • 相关文献

参考文献8

  • 1徐向阳,刘俊.农业区氨氮流失模型[J].环境污染与防治,1999,21(4):34-37. 被引量:63
  • 2黄民生.略论地下水硝酸盐氮污染及其防治措施[J].上海环境科学,1995,14(9):26-27. 被引量:28
  • 3小川吉雄 日本土壤环境分析法编辑委员会.全氮和可溶性氮.土壤环境分析[M].东京:博友社,1997.255-261.
  • 4南条正巳 日本土壤环境分析法编辑委员会.全磷和可溶性磷.土壤环境分析[M].东京:博友社,1997.26-273.
  • 5住田弘一 日本土壤环境分析法编辑委员会.易分解N、P.土壤环境分析[M].东京:博友社,1997.273-278.
  • 6史秀华.关于面源负荷中土壤的富营养化潜在力的研究.日本山口大学大学院理工学科博士论文[M].,2002..
  • 7史秀华.关于面源负荷中土壤的富营养化潜在力的研究[J].日本水环境学会志,2002,25(2):112-118.
  • 8王珂,许红卫,王人潮,朱荫湄.应用污染模型和地理信息系统评价和管理农业非点源污染[J].环境污染与防治,1997,19(6):30-31. 被引量:103

二级参考文献16

共引文献186

同被引文献56

  • 1曲建升,孙成权.温室气体减排:过去,现在与未来——俄罗斯批准《京都议定书》使国际气候行动出现新转折[J].地球科学进展,2004,19(6):1052-1053. 被引量:12
  • 2黄民生.略论地下水硝酸盐氮污染及其防治措施[J].上海环境科学,1995,14(9):26-27. 被引量:28
  • 3姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子[J].生态学杂志,2007,26(2):278-285. 被引量:110
  • 4何婷婷,华珞,张振贤,徐振剑.影响农田土壤有机碳释放的因子及固碳措施[J].首都师范大学学报(自然科学版),2007,28(1):66-72. 被引量:13
  • 5Potter K N, H A Torbert, O R Jones, et al. Distribution and amount of soil organic C in long-term management systems in Texas[J], Soil &Tillage Research, 1998, (47): 309-321.
  • 6Westto W M. Soil organic carbon sequestration rates by tillage and crop rotation : a global date analysis[J]. Soil Science Society of America Journal, 2002, 66(6): 1930-1946.
  • 7Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404(20): 858-861.
  • 8Six J, Elliott E T, Paustian K. Soil macro aggregate turnover and micro aggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103.
  • 9Gregorich E G, Kachanosky R G, Veroney R P. Ultrasonic dispersion of aggregates: distribution of organic matter in size fractions[J]. Canadian Journal of Soil Society, 1988, 68: 395-403.
  • 10S?rensen L H. Size and persistence of the microbial biomass formed during the humification of glucose, hemicellulose, and straw in soils containing different amounts of clay[J]. Plant and Soil, 1983, 75: 121-l30.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部