期刊文献+

功能化MWCNTs网格/环氧树脂复合材料的制备及性能 被引量:3

Preparation and properties of functionalized MWCNTs webs/epoxy resin composites
原文传递
导出
摘要 采用正压过滤法制备了多壁碳纳米管(MWCNTs)网格(巴基纸),并采用真空辅助RTM工艺制备了MWCNTs网格/环氧树脂复合材料。通过SEM、FTIR、拉伸测试等对MWCNTs网格的微观形貌和性能进行了表征,并研究了MWCNTs网格/环氧复合材料的拉伸性。结果表明,所制备的功能化MWCNTs网格比较均匀,拉伸强度在22~32MPa之间,拉伸模量约为1GPa,相比未功能化处理的MWCNTs网格,强度最大提高了约167%。功能化MWCNTs网格/环氧树脂复合材料的拉伸强度和拉伸模量可达到152MPa和6.48GPa,相比空白环氧树脂提高了约1倍以上,拉伸试样断面SEM表明,环氧树脂对功能化MWCNTs网格的浸润效果良好,界面结合紧密,有效地提高了复合材料的力学性能。 The functionalized multi-walled carbon nanotubes(MWCNTs)webs(buckypaper)were prepared by using positive pressure filtering process,and the functionalized MWCNTs webs were impregnated with epoxy by vacuum assistant RTM process.The morphology and performance of the MWCNTs webs were examined with SEM,FTIR and tensile testing methods.The mechanical properties of the MWCNTs web/epoxy composites were also measured by using tensile test.The results show that the functionalized MWCNTs webs is homogeneous,tensile strength is between 22 and 32MPa,tensile modulus is around 1GPa.The tensile strength is improved by 167%compared with that of the un-functionalized MWCNTs web.The strength and modulus of the functionalized MWCNTs webs/epoxy composites can reach 152 MPa and 6.48 GPa,respectively,improved by 100% compared with that of the neat epoxy.The fractured surfaces of some typical specimens from SEM observation show that the webs are impregnated well with epoxy and the interfacial bonding between the MWCNTs webs and epoxy matrix are good,which leads to the improvement of the mechanical properties of the composites.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2014年第4期866-872,共7页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(11172211)
关键词 功能化MWCNTs 网格 环氧树脂 复合材料 拉伸性能 functionalized MWCNTs web epoxy resin composites tensile properties
  • 相关文献

参考文献5

二级参考文献57

  • 1杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12. 被引量:990
  • 2Iijima S. Helical microtubules of graphitic carbon [J] . Nature, 1991,354(6348): 56.
  • 3Raffaelle R P, Landi B J, Harris J D, et al. Carbon nanotubes for power applications [J] . Mater Sci Eng B, 2005, 116(3):233.
  • 4Tsai T Y, Lee C Y, Tai N H, et al. Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices [J] . Appl Phys Lett, 2009,95 (1) : 013107.
  • 5Xiao L, Chen Z, Feng C, et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers [J]. Nano Lett, 2008,8 (12) : 4539.
  • 6Lv R T, Kang F Y, Gu J L, et al. Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide- band microwave absorber [J]. Appl Phys Lett, 2008, 93 (22) :223105.
  • 7Frackowiak E, Khomenko V, Jurewicz K, et al. Supercapacitors based on conducting polymers/nanotubes composites [J] . J Power Sources', 2006,153(2) : 413.
  • 8Arena A, Donato N, Saitta G, et al. Photovoltaic properties of multi-walled carbon nanotubes deposited on n-doped silicon [J]. Microelectron J, 2008,39(12) :1659.
  • 9Jia Y, Wei J Q, Wang K L, et al. Nanotube-silicon heterojunction solar cells [J]. Adv Mater, 2008,20(23) : 4594.
  • 10Landi B J, Canter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries [J]. Energy Environ Sei, 2009, 2 (6):638.

共引文献8

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部