期刊文献+

Short-range structural change in indium melt by Gaussian peaks decomposing of RDF

Short-range structural change in indium melt by Gaussian peaks decomposing of RDF
下载PDF
导出
摘要 Liquid indium's structure was studied at 280, 390, 550, 650, and 750 deg Crespectively by using an elevated temperature X-ray diffractometer, and its radial distributionfunction (RDF) at different temperatures was decomposed into 4 Gaussian peaks in the range of0.2-0.6nm. Positions of the decomposed Gaussian peaks were compared with the nearest and the secondnearest neighbor atomic distances, respectively. It is shown that the position of the firstdecomposed Gaussian peak is similar to the nearest neighbor atomic distance in liquid In at thecorresponding temperature, and that of the third decomposed Gaussian peak is similar to the secondnearest neighbor atomic distance. Moreover, the first and the third Gaussian peaks correspond to thefirst and the second atom shells of liquid In at the corresponding temperatures, respectively.Therefore, the position and the area of Gaussian peaks can represent the position and atom number ofcorresponding shells. Based on this result, short-range structural changes in liquid In wasstudied. It was found that the first and the second shells are close to the referred atom, and theatom number at the shells decreases with the increasing temperature from 280 to 750 deg C. Indifferent ranges of temperature, structural changes in the first and the second shells showdifferent features. Liquid indium's structure was studied at 280, 390, 550, 650, and 750 deg Crespectively by using an elevated temperature X-ray diffractometer, and its radial distributionfunction (RDF) at different temperatures was decomposed into 4 Gaussian peaks in the range of0.2-0.6nm. Positions of the decomposed Gaussian peaks were compared with the nearest and the secondnearest neighbor atomic distances, respectively. It is shown that the position of the firstdecomposed Gaussian peak is similar to the nearest neighbor atomic distance in liquid In at thecorresponding temperature, and that of the third decomposed Gaussian peak is similar to the secondnearest neighbor atomic distance. Moreover, the first and the third Gaussian peaks correspond to thefirst and the second atom shells of liquid In at the corresponding temperatures, respectively.Therefore, the position and the area of Gaussian peaks can represent the position and atom number ofcorresponding shells. Based on this result, short-range structural changes in liquid In wasstudied. It was found that the first and the second shells are close to the referred atom, and theatom number at the shells decreases with the increasing temperature from 280 to 750 deg C. Indifferent ranges of temperature, structural changes in the first and the second shells showdifferent features.
出处 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期85-89,共5页 北京科技大学学报(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China(No. 50071028) and Shandong Natural Scien
关键词 radial distribution function Gaussian peaks decomposing short-rangestructure atom shell radial distribution function Gaussian peaks decomposing short-rangestructure atom shell
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部