摘要
Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure and rheology of the solutions. We studied the structure and rheology of polyethylene oxide (PEO) and zein in 80% ethanol aqueous solutions and the resulted EFM. In solutions, zein with rod-like conformation tends to aggregate and form oligomer, the number of proteins in the oligomer spans from 2.5 to 55.2, while PEO always behaves like Gaussian chain in good solvent. Zein preferred to distribute along PEO chains in their mixed solutions, and the structures decomposed from small angle X-ray scattering have consistent relaxation spatial-temporal characteristics with rheological behaviors.Further, the aging of zein solutions enhanced shear thinning and resulted thicker fibers in EFM, which are attributed to the rod-like growth of zein aggregates. Aggregates in viscous media with long enough relaxation time are probably crucial for the formation of continuous electrospun fibers or ribbons. This study provides a clear correlation of the structure, rheology of solutions with the morphologies of EFM made up of proteins and polymers.
Electrospun fiber mats (EFM) integrated proteins and biocompatible polymers have been widely used as tissue scaffold, wound dressing and food packaging. The morphology of EFM has strong correlation with the structure and rheology of the solutions. We studied the structure and rheology of polyethylene oxide (PEO) and zein in 80% ethanol aqueous solutions and the resulted EFM. In solutions, zein with rod-like conformation tends to aggregate and form oligomer, the number of proteins in the oligomer spans from 2.5 to 55.2, while PEO always behaves like Gaussian chain in good solvent. Zein preferred to distribute along PEO chains in their mixed solutions, and the structures decomposed from small angle X-ray scattering have consistent relaxation spatial-temporal characteristics with rheological behaviors.Further, the aging of zein solutions enhanced shear thinning and resulted thicker fibers in EFM, which are attributed to the rod-like growth of zein aggregates. Aggregates in viscous media with long enough relaxation time are probably crucial for the formation of continuous electrospun fibers or ribbons. This study provides a clear correlation of the structure, rheology of solutions with the morphologies of EFM made up of proteins and polymers.
基金
supported by the National Natural Science Foundation of China(Nos. 21374117 and 21774128)
Major State Basic Research Development Program(No.2015CB655302)
Key Research Program of Frontier Sciences (No. QYZDY-SSW-SLH027)
One Hundred Person Project of the Chinese Academy of Sciences