摘要
Giant liposome is an important lipid structure widely used in biological and medical fields. In its main preparation method, electroformation, many influencing factors must be optimized for good effect. How to collect the desired giant liposomes is another major issue. In this work, a microchip with a reactor chamber array was used to study the influences of multiple parameters, and a suitable condition could be achieved rapidly and efficiently. A tailor-made collection chamber was also integrated on the chip. Based on the multifactor and multilevel orthogonal experiment, optimal conditions of the lipid solution, buffer solution, and electric signal were achieved with high efficiency. More than one thousand giant liposomes could be formed in each microscale reactor chamber, and most of them were unilamellar. The on-chip collection ratio of giant liposome carriers could also approximate to 40%.
Giant liposome is an important lipid structure widely used in biological and medical fields. In its main preparation method, electroformation, many influencing factors must be optimized for good effect. How to collect the desired giant liposomes is another major issue. In this work, a microchip with a reactor chamber array was used to study the influences of multiple parameters, and a suitable condition could be achieved rapidly and efficiently. A tailor-made collection chamber was also integrated on the chip. Based on the multifactor and multilevel orthogonal experiment, optimal conditions of the lipid solution, buffer solution, and electric signal were achieved with high efficiency. More than one thousand giant liposomes could be formed in each microscale reactor chamber, and most of them were unilamellar. The on-chip collection ratio of giant liposome carriers could also approximate to 40%.
基金
supported by the National Natural Science Foundation of China(Nos. 81501617,81871450,21827812)
Science and Technology Planning Project of Yuzhong District, Chongqing, China(No. 20170122)
the Program of International S&T Cooperation (No. 2014DFG31380)
the Foundation for Higher Education Young Key Teacher of Chongqing, China