期刊文献+

多项式优化问题极小值数量及最优值下界分析 被引量:1

Number of minimum value and lower bound of optimal value for polynomial optimization problem
下载PDF
导出
摘要 为解决多元多项式的极小值数量及无约束多项式优化问题(POP)的全局最优值,首先给出了关于Liqun,Koklay提出的当n≤2时,具有r个变量的2n或2n+1阶多项式,最多有nr个孤立局部极小值的猜测的证明过程.其次,由于无约束多项式优化问题一般是非凸的,NP难的,其全局最优值不易求解,故利用张量的相关知识,给出了计算二阶无约束多元多项式全局最优值下界的理论估计及证明过程,此理论简单、方便.从而可以更好的计算全局最优值. In order to solve the minimum number of multivariate polynomials and the global optimal value of the unconstrained polynomial optimization problem(POP),this paper first gives the proof of the conjecture of Liqun and Koklay that a 2n-degree or 2n+1-degree polynomial of r variables has at mostrn isolated local minima when n ≤2.Secondly,since the problem of unconst-rained polynomial optimization is generally nonconvex,NP hard and its global optimal value is not easy to be solved,so by using the relevant knowledge of tensor,the theory and the proof of the lower bound of the global optimal value of the second order unconstrained multivariate polynomials are given.This theory is simple and convenient,which can be used to calculate the global optimal value better.
作者 高雷阜 周庆
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2018年第3期669-672,共4页 Journal of Liaoning Technical University (Natural Science)
基金 教育部高校博士学科科研基金联合资助(20132121110009.)
关键词 无约束 多项式优化问题 张量 全局最优值 局部极小值 unconstrained polynomial optimization problems tensor global optimization local minima
  • 相关文献

参考文献2

二级参考文献12

  • 1HUANG Yongwei1,& ZHANG Shuzhong2 1Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology,Kowloon,Hong Kong,China,2Department of Systems Engineering and Engineering Management,The Chinese University of Hong Kong,Shatin,Hong Kong,China.Approximation algorithms for indefinite complex quadratic maximization problems[J].Science China Mathematics,2010,53(10):2697-2708. 被引量:3
  • 2Lindstrom P, Duchaineau M. Factoring Algebraic Error For Relative Pose Estimation, Technical Report LLNL-TR-411194-DRAFT, March 2009.
  • 3Qi L Q. Eigenvalues of a Real Supersymmetric Tensor. J. Symbolic Computation, 2005, 40:1302-1324.
  • 4Wang Y J, Qi L Q. On the Successive Supersymmetric Rank-1 Decomposition of Higher-order Supersymmetric Tensors. Numerical Linear Algebra and Applications, 2007, 14:503-519.
  • 5Ling C, Nie J W, Qi L Q, Ye Y Y, Bi-quadratic Optimization over Unit Spheres and Semidefinite Programming Relaxations, SIAM J. Optimization, 2009, 20:1286-1310.
  • 6Nesterov Y. Squared Functional Systems and Optimization Problems, In: High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S Zhang, eds., Kluwer, Dordrecht, 2000.
  • 7Kofidis E, Regalia P A. On the Best Rank-1 Approximation of Higher-order Supersymmetric Tensors. SIAM J. Matrix Analysis & Applications, 2002, 23:863-884.
  • 8Lasserre J B. Global Optimization with Polynomials and the Problem of Moments. SIAM J. Optimization, 2001, 11:796-817.
  • 9Parrilo P A. Semidefinite Programming Relations for Semialgebraic Problems. Mathematical Programming, 2003, 96(B): 293-320.
  • 10Golub G H, Van Loan C F. Matrix Computations (3rd edn). Baltimore: Johns Hopkins University Press, MD, 1996.

共引文献1

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部