摘要
为研究串联故障电弧的检测方法,针对三相电动机及变频器负载开展了串联故障电弧实验.首先采用小波包对负载端电压进行4层分解,并建立5~16节点系数的极限学习机(Extreme learning machine, ELM)预测模型;然后利用建立的ELM预测模型对10个周波的小波包节点系数进行预测,分别计算每个周波预测残差的平均值并排序,取4个最小值的均值作为故障电弧特征;最后选取正常状态下特征的最大值和故障状态下特征的最小值的均值为故障电弧检测的公共阈值.结果表明:上述方法可有效检测三相电动机及变频器负载回路中的故障电弧,同时可排除谐波及暂态干扰.
To study detection method of series arc fault,series arc fault experiments in three-phase motor and inverter load were carried out.Firstly,the load side voltage was decomposed into four layers by using wavelet packet.And an extreme learning machine(ELM)prediction model with 5~16 node coefficients was established.Then,the wavelet packet node coefficients of ten cycles were predicted with the established ELM prediction model.The average value of prediction residual error of each cycle was calculated and sorted.And the mean value of four minimum values was used as fault arc feature.Finally,the average of the maximum feature value in normal state and the minimum feature value in arc fault state was used as common threshold of arc fault detection.The results show that the proposed method can effectively detect serial arc fault in the three-phase motor and inverter load loop even with harmonic or transient interference.
作者
高洪鑫
郭凤仪
唐爱霞
王智勇
游江龙
GAO Hongxin;GUO Fengyi;TANG Aixia;WANG Zhiyong;YOU Jianglong(Faculty of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,China;Liaoyang Power Supply Company,State Grid Liaoning Electric Power Company Limited,Liaoyang 111000,China)
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2019年第4期359-365,共7页
Journal of Liaoning Technical University (Natural Science)
基金
国家自然科学基金(51674136)
关键词
故障电弧
负载端电压
小波包分解
极限学习机
预测残差
arc fault
load side voltage
wavelet packet decomposition
extreme learning machine
prediction residual