期刊文献+

生物还原制备Au/γ-Al_2O_3催化葡萄糖氧化动力学研究 被引量:6

Kinetics of D-glucose Oxidation to D-gluconic Acid with Hydrogen Peroxide over Bio-reduced Au/γ-Al_2O_3 Catalysts
原文传递
导出
摘要 主要讨论了生物还原制备Au/γ-Al2O3催化剂用于催化葡萄糖氧化动力学的研究.利用甲烷氧化菌素(Methanobactin,Mb)作为还原剂及稳定剂制备了1%Au/γ-Al2O3催化剂.通过TEM分析,负载纳米金颗粒(Gold nanoparticles,AuNPs)粒径为3.48±0.881 nm.比较Mb及Au/γ-Al2O3催化剂的FTIR发现,在Au/γ-Al2O3催化剂表面整合有Mb基团.实验建立了幂指数速率模型,确定了D-葡萄糖、H2O2、催化剂、葡萄糖酸钠的反应级数,分别为:0.4696、0.3729、0.4088和-0.9794.同时通过阿伦尼乌斯曲线求得该催化剂活化能(Activation energy,Ea)为6.114 kJ/mol.最后通过验证该速率模型发现,预测值与实验值具有良好的拟合性. In this paper,the kinetics of oxidation of D-glucose with H2O2 over heterogeneous bio-reduced Au /γ-Al2O3 catalysts had been mainly discussed.A catalyst with 1% Au support on alumina was prepared by using Mb which played dual roles as both reductant and stabilizer.The average Gold nanoparticles(AuNPs) size was calculated to be around 3.48 ± 0.881 nm by TEM images.In addition,comparing the FTIR spectrum of Mb and Au /γ-Al2O3 catalysts indicated the involvement of biomass groups in the synthesis.By fitting the kinetic data using power-rate law model after eliminating mass transfer resistances,the orders of the reaction of D-glucose,H2O2,catalyst and sodium gluconate were found to be 0.4696,0.3729,0.4088 and-0.9794,respectively.The activation energy(Ea) was calculated to be 6.1141kJ/mol from an Arrhenius plot.Based on the kinetic rate equation,the model predictions were in good agreement with the experimental data.
出处 《分子催化》 EI CAS CSCD 北大核心 2014年第5期427-435,共9页 Journal of Molecular Catalysis(China)
基金 国家自然科学基金项目(21073050) 黑龙江省研究生培养创新计划资助项目(YJSCX2013-260HSD)
关键词 生物还原 Au/γ-Al2O3催化剂 葡萄糖氧化 动力学 bioreduction Au /γ-Al2O3catalysts D-Glucose oxidation kinetic study
  • 相关文献

参考文献17

二级参考文献154

  • 1毕小健.分光光度法测定大气中的己内酰胺[J].山西化工,2007,27(3):41-43. 被引量:2
  • 2Alardin F, Ruiz P, Devillers M, et al. Bismuth-promoted palladium catalysts for the selective oxidation of glyoxalinto glyoxalic acid [ J ]. Appl. Catal. A, 2001, 215: 125-136.
  • 3Gallezot P, Mesantoume R, Christidis Y, et al. Catalytic oxidation of glyoxal to glyoxylic acid on platinum metals [ J]. J. Catal. , 1992,133:479-485.
  • 4Deffernez A , Hermans S, Devillers M. Bimetallic Bi-Pt, Ru-Pt and Rn-Pd and trimetallic catalysts for the selective oxidation of glyoxal into glyoxalic acid in aqueous phase [J]. Appl. Catal. A: General, 2005, 282:303-313.
  • 5Alardin F, Delmon B, Ruiz P, et al. Stability of bimetal- lic Bi-Pd and Pb-Pd carbon-supported catalysts during their use in glyoxal oxidation [ J ]. Catal. Today, 2000, 61 : 255-262.
  • 6Haruta M, Kobayashi T, Sano H, et al. Novel gold cata- lysts for the oxidation of carbon monoxide at a temperature far below 0℃ [J]. Catal. Lett., 1987, 16:405-408.
  • 7Graham J, Hutchings, Masatake Haruta. A golden age of catalysis : A perspective [ J ]. Appl. Catal. A : General, 2005, 291:2-5.
  • 8Xi Ch, Zhan feng Zh, Huai yong Zh, et al. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation [ J ]. Green Chem. , 2010, 12 : 414-419.
  • 9Yadav G D, Gupta V R. Synthesis of glyoxylic acid from glyoxal[ J]. Process Biochem. , 2000, 36:73-78.
  • 10Hermans S, Deffemez A, Devillers M. Au-Pd/C cata- lysts for glyoxal and glucose selective oxidations [ J ]. Ap- pl. Catal. A, 2011,395 : 19-27.

共引文献32

同被引文献129

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部