摘要
本文叙述一个关于几何级数的定理,并应用其结果解决一类特殊的概率问题。该定理为:设:a_1+a_2+a_3+…是以公比为r的几何级数,|r|<1。n和k_1,k_2,k_3,…,k_n都是正整数,则特殊的概率问题是指每一次试验都是等可能事件,并且这种试验是可以继续地做下去,直到某一结果出现才终止。然后构造所要求的概率问题。因而,几何级数与概率问题联系起来了。
This paper is about the theorem of gcometrice Sries and the use of the nesult to solve porticulas probablity problems.
The theosem is shown as followss: Let
be a geometric series with ratio r , | r| < 1 . Let n and k1, k2,…,kn be positive ntegers. Then
Particulas probability problems mean that the tests are egually possible events and will continne until the reguested result occurs.
Therefore geometric series is related to a probability problem
出处
《东华理工大学学报(社会科学版)》
1987年第4期1-6,共6页
Journal of East China University of Technology(Social Science)
关键词
几何级数
概率
正整数
事件
geometric series, probability, positive integers, event.