摘要
为解决层合间隔复合材料易开裂和整体性差的问题,采用绿色环保的玄武岩低捻长丝作为经、纬纱,合理设计经向截面图和组织图,并在普通织机上织造3种不同间隔高度的锯齿形三维机织间隔织物。以所织得的锯齿形三维机织间隔织物作为增强材料,环氧乙烯基树脂作为基体,利用真空辅助成型工艺,制备锯齿形三维机织间隔复合材料,同时对三维机织间隔复合材料进行三点弯曲性能测试,得到弯曲载荷-位移曲线、能量吸收图和破坏模式。结果表明:复合材料的纬向是主要承力方向;组织循环个数越多的材料表现出更好的弯曲性能;在一定间隔高度范围内,间隔高度越高的锯齿形三维机织间隔织物承受的弯曲载荷和吸收的能量也越高;锯齿形三维机织间隔复合材料的破坏模式是材料上表层受压,下表层受拉,而连接层受压;在作用力下材料只是出现明显的变形,但并未出现材料整体的破坏。
For solving the easily-cracking and poor-integrated problem of laminated composites, the zigzag 3-D woven spacer fabric with the basalt fiber filaments tows as warp and weft yarns were fabricated on the common loom by reasonable design, which had three different spacer heights. The 3-D woven basalt fiber spacer composites were obtained from epoxy vinyl resin as matrix and 3-D woven basalt fiber spacer fabric as reinforced material by vacuum assisted resin transfer molding process. Then, the three-point bending property of 3-D woven basalt fiber spacer composite was tested by using RGY-5 microcomputer to control electronic universal machine, and the load-displacement curves, absorption energy-displacement histogram and failure model were obtained. Results show that the main bearing direction is the weft of material. The more numbers of organization will have better bending property at the rang of certain heights, the values of the load and absoption energy are bigger with the higher spacer height. The failure model of zigzag shaped 3-D woven spacer composite is that the upper surface of the material is under pressure, the bottom surface is under tension, and the connecting layer is under pressure. Under the bending load, the material are not integrally destructed, but obviously deforms.
作者
张雪飞
王晶晶
吕丽华
叶方
ZHANG Xuefei;WANG Jingjing;LüLihua;YE Fang(Dalian Polytechnic University,Dalian,Liaoning 116034,China)
出处
《纺织学报》
EI
CAS
CSCD
北大核心
2019年第3期65-70,共6页
Journal of Textile Research
基金
辽宁省高等学校产业技术研究院重大项目(6999180102)
辽宁省科技创新团队项目(LT2017017)
关键词
三维机织间隔复合材料
玄武岩纤维
弯曲性能
真空辅助成型工艺
3-D woven spacer composite
basalt fiber
bending property
vacuum assisted resin transfer molding process