期刊文献+

基于人工神经网络的土工合成材料加筋挡墙临界高度预测模型(英文) 被引量:2

Artificial neural networksbased-model for forecasting critical height of GRW
下载PDF
导出
摘要 提出了一种基于人工神经网络(ANN)技术的加筋挡墙设计高度预测方法。通过分析挡墙失效的原因,确定了7个主要因素作为网络的输入神经元。收集23组挡墙离心模型试验数据,2组足尺试验数据,1组实际工程的破坏数据,共26组样本作为训练及检验样本,建立了可用于加筋挡墙设计高度预测的径向基函数网络(RBFN)及误差反传网络(BPN)模型。结果表明径向基函数网络在学习速度,预测准确性及网络推广能力方面均优于BP网络,本文方法可用于加筋支挡结构的设计参考。 This paper presents an artificial neural networksbased approach for predicting the critical height of GRW. Seven major affecting factors have been used for analyzing the general failure cause. A radial basis function neural network (RBFN), as well as a back propagation neural network (BPN) for comparison, is trained and tested using 23 series of centrifuge model test data, 2 fullscale test data, and prototype date of a practical project. The modeling results indicated that the RBFN is much better than the BPN on learning speed, prediction accuracy and generalization ability. The paper provides a reference for GRW design.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2002年第6期782-786,共5页 Chinese Journal of Geotechnical Engineering
关键词 人工神经网络 土工合成材料 加筋 挡墙 临界高度 预测模型 artificial neural network geosynthetics radial basis function neural network reinforced retaining wall critical height
  • 相关文献

参考文献12

  • 1[1]Broomhead D S,Lowe K. Multivariable functional interpolation and adaptive networks[J].Complex System,1988,2:321-355.
  • 2[2]Ghaboussi J,Garrentt J H Jr,Wu X.Knowledge-based modeling of material behavior with neural networks[J].Journal of Engineering Mechanics, ASCE, 1991,117(1): 132-153.
  • 3[3]Hartman E J,et al.Layered neural networks with Gaussian hidden units as universal approximations[J]. Neural Computation, 1990,2: 210-215.
  • 4徐林荣,华祖煫,杨灿文.加筋土陡边坡状态评定的模糊聚类分析[J].岩土工程学报,1999,21(4):475-480. 被引量:4
  • 5[5]Lee S,Kil R M.A Gaussian potential function network with hierarchically self-organizing learning[J].Neural Networks, 1991,4: 207-224.
  • 6[6]Moody J,Darken C J. Fast learning in networks of locally tuned processing units[J].Neural Computation, 1989,1:213-225.
  • 7[7]Rumelhart K E,Hinton G E,Williams R J. Learning internal representation by error propagation[A].Rumelhart D E,McClelland.Parallel distributed processing, foundations.Vol 1[M],Cambridge:MIT Press,1986.
  • 8[8]Helwany M B. Effects of facing rigidity on the performance of geosynthetic reinforced soil retaining wall[J].Soil and Foundations, 1996, 36(1): 27-38.
  • 9[9]Lee K,et al. Failure and deformation of four reinforced soil walls in eastern Tennessee[J].Geotechnique, 1994,44(3): 397-426.
  • 10[10]Porbaha A,Goodings K J.Centrifuge modeling of geotexile reinforced cohesive soil retaining walls[J].Journal of Geotechnical Engineering, ASCE, 1996, 122(10): 840-848.

二级参考文献11

共引文献3

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部