期刊文献+

基于多级零树编码的小波系数网格编码量化 被引量:1

TCQ OF WAVELET COEFFICIENTS BASED ON MULTI-STAGE ZEROTREE CODING
下载PDF
导出
摘要 该文提出了对小波图像作多级零树编码后进行网格编码量化(TCQ)的新方法。首先利用子带间的相关性进行零树编码,然后利用卷积编码和信号空间扩展来增大量化信号间的欧氏距离,并用Viterbi算法寻找最优量化序列。仿真结果表明,该方法比零树编码后采用最优量化要提高0.3dB左右。该方法还具有编码计算复杂度适中,解码简单的优点。 A new method which performs Trellis Coded Quantization(TCQ) of wavelet coefficients based on multi-stage zerotree coding is proposed. First, the zerotree coding utilizes correlation between the subbands, then convolutional coding and signal space expanding are used for increasing Euclidian distance between signals. Finally, Viterbi algorithm is used to find a optimized survived quantized sequence.Simulation states that this method has an advantages of 0.3dB or so over optimized scalar quantization after zerotree coding. The method also has such capability that it has only modest encoding complexity with simple decoding.
出处 《电子与信息学报》 EI CSCD 北大核心 2002年第12期1899-1905,共7页 Journal of Electronics & Information Technology
关键词 多级零树编码 小波系数 小波变换 网格编码量化 VITERBI算法 图像信号 Wavelet transform, Zerotree coding, Trellis Coded Quantization(TCQ), Viterbi algorithm
  • 相关文献

参考文献10

  • 1[1]S. Mallat, Multifrequency channel decomposition of images and wavelet models, IEEE Trans. on ASSP, 1989, ASSP-37(12), 2091-2110.
  • 2[2]M. Atonini, M. Barlaud, P. Mathieu, Image coding using wavelet transform, IEEE Trans. on Image Processing, 1992, IP-1(2), 205-220.
  • 3[3]J.M. Shapiro, Embeded image coding using zerotrees of wavelet coefficients, IEEE Trans. on Signal Processing, 1993, SP-41(12), 3445-3462.
  • 4[4]A. Said, W. A. Pearlman, A new fast and efficient image codec based on set partitioning in hierachical trees, IEEE Trans. on CAS VT., 1996, CAS VT-6(3), 243-250.
  • 5[5]M.W. Marcellin, T. R. Fischer, Trellis coded quantization of memoryless and Gauss-Markov sources, IEEE Trans. on Comm., 1990, COM-38(1), 82-93.
  • 6[6]Min Wang, T. R. Fischer, Trellis coded quantization designed for noisy channels, IEEE Trans. on Info. Theory, 1994, IT-40(6), 1792-1800.
  • 7[7]G. Ungerboeck, Trellis coded modulation with redundant signal sets-PartI: Introduction, IEEE Comm. Mag., 1987, 25(2), 5-11.
  • 8[8]T. Berger, Rate Distortion Theory, Englewood Cliffs, NJ, Prentice-Hall, 1971, 37-45.
  • 9[9]J. villasenor, B. Belzer, J. Liao, Wavelet filter evaluation for image compression, IEEE Trans. on Image Processing, 1995, IP-2(8), 1053-1060.
  • 10[10]R.L. Joshi, Subband image coding using classification and trellis coded quantization, Ph. D. dissertation, Washgton State University, Aug, 1996.

同被引文献12

  • 1赵改善.小波变换与地震数据压缩[J].石油物探,1994,33(4):19-28. 被引量:10
  • 2Donoho D L.Digital Ridgelet transform via rectopolar coordinate transform [R].Stanford: Department of Statistics,Stanford University,1998.
  • 3Beylkin G.Discrete Radon transform[J].IEEE Tans ASSP,1987,35(1):162-172.
  • 4Donoho D L.De-noiseing by soft-thresholding [J].IEEE Trans Infom Theory,1995,41(5):613-627.
  • 5Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81:425-455.
  • 6Shapiro J M.Embedded image coding using zerotree of wavelet coefficients[J].IEEE Trans Signal Processing,1993,41(12):3 445-3 462.
  • 7Candes E J.Ridgelet: theory and applications [D].Stanford:Department of Statistics,Stanford University,1998.
  • 8Candes E J.Ridgelets: Estimating with ridge functions [R].Stanford:Department of Statistics,Stanford University,1999.
  • 9Candes E J.Monoscale ridgelets for the representation of images with edges [R].Stanford: Department of Statistics,Stanford University,1999.
  • 10Donoho D L.Orthonormal Ridgelets and linear singularities[J].SIAM J Math Anal,2000,31(5):1062-1099.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部