期刊文献+

二维网格编码矢量量化及其在静止图像量化中的应用 被引量:2

STILL IMAGE QUANTIZATION USING TWO-DIMENSION TRELLIS CODED VECTOR QUANTIZATION
下载PDF
导出
摘要 该文提出了在二维码书空间中,在矢量量化(VQ)的基础上,应用网格编码量化(TCQ)的思想来实现量化的新方法——二维网格编码矢量量化(2D-TCVQ)。该方法首先把小码书扩展成大的虚码书,然后用网格编码矢量量化(TCVQ)的方法在扩大的二维码书空间中用维特比算法来寻找最佳量化路径。码书扩大造成每一子集最小失真减小从而提高了量化性能。由于二维TCVQ采用的码书尺寸较小,因而可以应用到低存贮、低功耗的编解码环境。仿真结果表明,同一码书尺寸下,二维TCVQ比TCVQ好0.5dB左右。同时,该方法具有计算量适中,解码简单以及对误差扩散不敏感的优点。 A method called Two Dimension Trellis Coded Vector Quantization(2D-TCVQ) which applies the method of TCQ after VQ is implemented is proposed. This method first expands the small codebook to larger virtual codebook, then uses Viterbi algorithm in two dimension to search the minimal distortion quantized route. The expansion of codebook min-ishes the minimal distortion in every subset and improves the quantization performance. By using small size codebook 2D-TCVQ can be applied in many low-power encode/decode condition. Simulation states the method has advantage of 0.5dB nearly over TCVQ.The method also has capability that it has only modest encoding complexity with simple decoding and it is insensitive to channel errors.
出处 《电子与信息学报》 EI CSCD 北大核心 2002年第12期1906-1911,共6页 Journal of Electronics & Information Technology
关键词 二维网格编码 矢量量化 静止图像量化 小码书扩展 二维码书 低功耗 图像信号 VQ, TCVQ, Small codebook expansion, Two dimensional codebook, Low-power
  • 相关文献

参考文献8

  • 1[1]Y. Linde, A. Buzo, M. O. Gray, An algorithm for vector quantization design, IEEE Trans. on Commun., 1980, COM-28(1), 84-95.
  • 2[2]M.W. Marcellin, T. R. Fischer, Trellis coded quantization of memoryless and Gauss-Markov sources, IEEE Trans. on Commun., 1990, 38(1), 82-93.
  • 3[3]Min Wang, T. R. Fischer, Trellis-coded quantization designed for noisy channels. IEEE Trans. on Info. Theory, 1994, 40(6), 1792-1800.
  • 4[4]T.R. Fischer, M. W. Marcellin, M. Wang, Trellis coded vector quantization, IEEE Trans. on Info. Theory, 1991, 37(5), 1551-1566.
  • 5[5]T. Berger, Rate Distortion Theory, Englewood Cliffs, NJ: Prentice-Hall, 1971, 37-45.
  • 6[6]C.E. Shanon, A mathematical theory of communication, Bell Syst. Tech. J., 1948, 27(2), 379-423.
  • 7[7]K. Masselos, P. Merakos, T. Stouraitis, C. E. Goutis, A novel algorithm for low-power image and video coding, IEEE Trans. on CAS VT, 1998, 8(3), 258-263.
  • 8[8]G.D. Forney, Jr, The Viterbi algorithm, Proc. IEEE(Invited papers), 1973, 61(2), 268-278.

同被引文献20

  • 1陈善学.图像矢量量化的等误差自组织特征映射算法[J].系统工程与电子技术,2004,26(9):1189-1191. 被引量:3
  • 2刘丽娟,邹雪城,沈绪榜.一种新的矢量量化编码算法[J].小型微型计算机系统,2004,25(10):1831-1835. 被引量:2
  • 3Kohonen T. An introduction to neural computing [J].Neural Networks, 1988, 1;3
  • 4Gafiychuk V V, Datsko B Y, Izmaylova J. Analysis of data clusters obtained by self-organizing methods[J].Physical-statistical Mechanics and It's Applications,2004, 341(10) :547
  • 5Fang W C, Sheu B J. A VLSI neural processor for image data compression using self-organizing networks [J].IEEE Trans on Neural Networks, 1992, 3(5):1112
  • 6Shigei N, Miyajima H, Maeda M. Numerical evaluation of incrementalrelaxation [ J ].vector quantization using stochastic IEICE Trans on Fundamentals ofElectronics Communications and Computer, 2004, 87(9):2364
  • 7Tan X Y, Chen S C, Zhou Z H. Robust face recognition from a single training image per person with Kernel-based SOM-face[J]. Advances in Neural Networks, 2004,3173:858
  • 8Nasrabadi N M, Feng Y. Vector quantization of images based upon the Kohonen self-organizing feature maps[C] //International Joint Conf Neural Networks, San Diego, CA, 1988:101
  • 9Christophe Amerijckx, Michel Verleysen, Philippe Thissen. Image compression by self-organized Kohonen maps[J]. IEEE Trans on Neural Networks, 1998, 9(5) : 1287
  • 10Kohonen T. Learning vector quantization: handbook of brain theory and neural networks [M]. 2nd ed.Cambridge: MIT Press, 2002:631-635

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部