期刊文献+

基于回路神经网络的特征子空间估值算法(英文)

Algorithms of Eigensubspace Estimation Based on Discrete Recurrent Neural Networks
下载PDF
导出
摘要 基于运用回复式离散神经网络进行特征子空间估值的理论,提出了解决正定对称矩阵的特征子空间估值问题的算法。其神经网络被描述为离散时间系统,它们在整个连续时间神经网络模型的数字化处理即计算机仿真方面具有优势,可以很容易地应用于数字化硬件。仿真结果的给出进一步阐明了网络良好的性能。 Based on the eigensubspace estimation using discrete recurrent neural networks, we propose algorithms to solve the problem of eigensubspace estimation for positive definite symmetric matrix. Neural networks are formulated as discrete time systems, they have advantages for computer simulations over digital simulations of continuous time neural network models. Thus they can be easily implemented in digital hardware. Simulation results are given to show the performance of networks.
作者 梁金明 章毅
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2002年第6期612-618,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金资助项目 编号:69871005 ~~
关键词 回路神经网络 特征子空间 估值算法 特征向量 计算机仿真 eigenvalue eigenvector eigensubspace algorithm recurrent neural network
  • 相关文献

参考文献1

二级参考文献13

  • 1[1]Diamantaras K I, Hornik K, Strintzis M G. Optimal linear compression under unreliable representation and robust PCA neural models. IEEE Trans.: Neural Networks, 1999, 10(5): 1 186-1 195
  • 2[2]Luo F, Unbehauen R, Cichocki A. A minor component analysis algorithm. Neural Networks, 1997, 10(2): 291-297
  • 3[3]Luo F, Unbehauen R. A minor subspace analysis algorithm. IEEE Trans.: Neural Networks, 1996, 8(5): 1 149-1 153
  • 4[4]Luo F, Unbehauen R, Li Y D. A principal component analysis algorithm with invariant norm. Neurocomputing, 1995, 8: 213-221
  • 5[5]Mathew G, Reddy V U. Development and analysis of a neural network approach toPisarenko's harmonic retrieval method. IEEE Trans.: Signal Processing, 1994, 42(3): 663-667
  • 6[6]Mathew G, Reddy V U. Orthogonal eigensubspace estimation using neural networks. IEEE Trans.: Signal Processing, 1994, 42(7):1 803-1 811
  • 7[7]Mathew G, Reddy V U, Dasgupta S. Adaptive estimation of eigensubspace. IEEE Trans.: Signal Processing, 1995, 43(2): 401-411
  • 8[8]Oja E, Karhunen J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. of Math. Anal. Appl., 1985, 106:69-84
  • 9[9]Oja E. Principal components, minor components, and linear neural networks. Neural Networks, 1992,5: 927-935
  • 10[10]Reif K, Lou F, Unbehauen R. The exponential stability of the invariant norm PCA algorithm.: IEEE Trans.: Circuits and Sys.-II, 1997, 44(10): 873-876

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部