期刊文献+

基于支持向量机的高分辨距离像分类法 被引量:5

High Resolution Range Profile Classification Based on Support Vector Machine
下载PDF
导出
摘要 支持向量机 (supportvectormachine ,SVM)是新一代学习机 ,具有良好的泛化性能。高分辨距离像(HRRP)分类是雷达复杂目标分类的重要方法。采用SVM作为分类器 ,研究了飞机目标HRRP分类法。设计了相应的预处理算法 ,并提出了结合VapnikChervonenkis维法和留一 (LOO)交叉验证法的参数选择算法。基于 5种飞机缩比模型的HRRP数据 ,比较了SVM分类法和最大相关分类法的性能 ,研究了噪声、训练用方位角采样数和训练样本集的大小对识别性能的影响。实验结果表明 ,SVM在HRRP分类上具有良好的应用前景。 Support vector machine (SVM) is a new generation learning system with good generalization property High resolution range profile (HRRP) classification is important to radar complex target classification In this paper, we apply SVM to aircraft HRRP classification, propose a preprocessing method and present a new SVM model selection scheme combining leave one out (LOO) cross validation method with Vapnik Chervonenkis dimension method Based on the HRRPs of five types of aircraft, the classification performance of the SVM method is compared with that of the maximum correlation classification method, and the influences of noise, number of sampled training azimuths and size of training set on the performance are researched It is demonstrated by experimental results that SVM is promising to better HRRP classification performances \;
出处 《系统工程与电子技术》 EI CSCD 北大核心 2002年第11期8-10,68,共4页 Systems Engineering and Electronics
关键词 雷达目标分类 支持向量机 高分辨距离像 LOO交叉验证 最大相关法 SVM HRRP Radar target classification Support vector machine High range resolution profile Leave one out cross validation Maximum correlation method
  • 相关文献

参考文献9

  • 1[1]Mitchell R A, Westerkamp J J. Robust Statistical Feature Based Aircraft Identification[J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(3): 1077-1093.
  • 2[2]Zyweck A, Bogner R E. Radar Target Classification of Commercial Aircraft[J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(2): 598-606.
  • 3[3]Bhatnagar R, Horvitz R, Williams R. A Hybrid System for Target Classification [J]. Pattern Recognition Letters, 1997, 18: 1399-1403.
  • 4[4]Vapnik V N. Statistical Learning Theory [M]. New York: John Wiley & Sons Inc. Pub., 1998: 493-520.
  • 5[5]Cristianini N, Taylor J S. An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods [M]. New York: Cambridge University Press, 2000: 93-112.
  • 6[6]Schlkopf B, Smola A J, Williamson R C, et al. New Support Vector Algorithms [J]. Neural Computation, 2000, 12: 1207-1245.
  • 7[7]Hsu C W, Lin C J. A Comparison on Methods for Multi-Class Support Vector Machines [R]. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, 2001.
  • 8[8]Chapelle O, Vapnik V. Model Selection for Support Vector Machines [EB]. http://www. ens-lyon.fr/~ochapell/ms-nips99.ps, 1999: 12.
  • 9[9]Campbell C. Algorithmic Approaches to Training Support Vector Machines: A Survey [A]. Michel Verleysen, eds. Proceedings of 8th European Symposium on Artificial Neural Networks [C]. Bruges, Belgium: D-Facto, 2000: 8-17.

同被引文献74

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部