期刊文献+

基于图像分析的CD-SEM显微视觉清晰度检测技术研究

Study on CD-SEM Microscopic Visual Clarity Detection Technology Based on Image Analysis
下载PDF
导出
摘要 在集成电路制造业,对CD-SEM显微图像进行精确地清晰度检测是对关键层图案的特征尺寸CD(Critical Dimension)量测的基础。通过与目前常用的、具有代表性的多种清晰度评价方法进行实验验证分析和对比,提出一种基于小波变换和规则集合相结合的CD-SEM图像清晰度检测算法,首先利用小波变换分层提取图像的边缘特征,然后按照规则集合对边缘点进行不同边缘类型划分,最后计算图像模糊前后不同类型边缘点占总边缘点的比例来评价原始图像的清晰度。经过实验模拟验证和现场生产实践检验,该算法具有较高的计算精度和较强的鲁棒性、实时性和场景适应性。 In integrated circuit manufacturing, accurate sharpness detection of CD-SEM microscopy images is the basis for critical layer pattern of CD(Critical Dimension) measurements. In this paper, through the experimental verification and comparison with the commonly used and representative multiple resolution evaluation methods, a CD-SEM image sharpness detection algorithm based on wavelet transform and rule set is proposed. Firstly, the wavelet transform is used and the edge feature of the image is extracted, and then the edge type is divided according to the rule set. Finally, the ratio of different types of edge points to the total edge point before and after the image blur is calculated to evaluate the sharpness of the original image. After experimental simulation and field production practice test, the algorithm has high computational accuracy and strong robustness, real-time performance and scene adaptability.
作者 姜国伟 田宝 章屠灵 JIANG Guowei;TIAN Bao;ZHANG Tuling(Shanghai Huahong Grace Semiconductor Manufacturing Corporation,Shanghai 201203,China.)
出处 《集成电路应用》 2019年第8期52-55,共4页 Application of IC
基金 上海市经济和信息化委员会软件和集成电路产业发展专项基金(1500223)
关键词 CD-SEM显微图像 图像处理 小波变换 清晰度检测 CD-SEM microscopic image image processing wavelet transform sharpness detection
  • 相关文献

参考文献2

二级参考文献30

  • 1王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:123
  • 2袁珂,徐蔚鸿.基于图像清晰度评价的摄像头辅助调焦系统[J].光电工程,2006,33(1):141-144. 被引量:11
  • 3王勇,谭毅华,田金文.一种新的图像清晰度评价函数[J].武汉理工大学学报,2007,29(3):124-126. 被引量:27
  • 4杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 5Wang Z,Sheikh H R, Alan C B. Objective Video Quality As- sessment[C]//The Handbook of Video Databases.. Design and Applications. Florida : CRC Press, 2003,1041-1078.
  • 6Ng K C, Nathaniel P, Aun N, et al. Practical Issues in Pixel- based Auto-focusing for Machine Vision[C]// Proceedings of the 2001 IEEE. International Conference on Robotics & Au- tomation,Seoul,Korea May 21-26,2001:2791-2796.
  • 7Subbarao M,Tyan J K. Selection the Optimal Focus Measure for Auto-focusing and Depth from Focus[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1998,20(8):864-870.
  • 8Schlag J F, Sanderson A C, Neuman, C P, et al. Implementa- tion of Automatic Focusing Algorithms for a Computer Vision System with Camera Control[R]. Technical Report CMU-RI- TR-83 14,Carnegie Mellon University,1983.
  • 9Tenenbaum J M. Accommodation in Computer Vision[D]. Ca- lifornia : Stanford University, 1970.
  • 10Krotkov E P. Active Computer Vision by Cooperative Focus and Stereo[M]. Springer-Verlag, 1989.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部