期刊文献+

基于深度学习框架的多类运动想象脑电分类研究 被引量:6

Research of multi-class motor imagery EEG classification based on deep learning framework
下载PDF
导出
摘要 模式识别是脑机接口(brain computer interface,BCI)系统的核心部分,其中特征提取和分类方法对最终分类结果有着决定性作用.针对多类运动想象脑电识别过程中特征提取困难,识别准确率低的问题,文中提出了一种新的基于深度学习框架的多类别运动想象脑电分类方法.首先,为了满足深度学习方法的大批量样本的需要,使用自编码器(auto-encoder,AE)对训练样本进行扩充;其次,针对脑电信号的特点,设计4个巴特沃斯带通滤波器提取脑电的θ、α、β和γ波段,并对每一波段的信号进行傅里叶变换,然后计算幅值的均值和方差;最后,通过深度信念网络(deep belief network,DBN)对脑电信号进行分类识别.文中使用BCIⅢ的竞赛数据集对所提出的方法进行验证,实验结果表明,文中方法能够有效地提高多类运动想象脑电的分类准确率,分类结果的平均kappa系数达到了0.802 4. Pattern recognition is the key module in brain computer interface(BCI)system,which contains feature extraction and classifier design.Aiming at the difficulty of feature extraction and low accuracy during the process of multi-class motor imagery(MI)electroencephalography(EEG)recognition,this paper presents a new approach for multi-class EEG classification based on deep learning framework.Firstly,auto-encoder(AE)is employed to expand training samples,in order to satisfy the needs of large numbers of samples of deep learning method.Secondly,according to the characteristics of EEG,four Butterworth band pass filters are designed to extractθ,α,βandγbands from original EEG signal,then FFT is used to convert these four bands into frequency domain,at the same time,mean value and variance are calculated.Finally,deep belief network(DBN)is utilized to classify MI EEG,which has a strong ability to learn feature from inputs.In this paper,the BCIⅢcompetition dataset is used to verify the proposed method,and experimental results show that this method can effectively improve the recognition accuracy of multi-class EEG,and the mean kappa coefficient of classification results reaches 0.802 4.
作者 葛荣祥 胡建中 GE Rongxiang;HU Jianzhong(School of Mechanical Engineering,Southeast University,Nanjing 210096,China)
出处 《江苏科技大学学报(自然科学版)》 CAS 2019年第4期61-66,共6页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学基金资助项目(51675098)
关键词 运动想象脑电 深度学习 自编码器 傅里叶变换 深度信念网络 motor imagery electroencephalography deep learning auto-encoder Fourier transform deep belief network
  • 相关文献

参考文献2

二级参考文献20

  • 1徐舜,陈绍荣,刘郁林.基于非线性时频掩蔽的语音盲分离方法[J].声学学报,2007,32(4):375-381. 被引量:9
  • 2CHIN Z Y,ANG K K,WANG C C,et al.Multi-class filter bank common spatial pattern for four-class motor imagery BCI[J].31st Annual International conference of the IEEE EMBS,2009:571-574.
  • 3LI Y,GAO X R,LIU H SH,et al.Classification of single-trial electroencephalogram during finger movement[J].IEEE Transactions on Biomedical Engineering,2004,51(6):1019-1025.
  • 4NAEEM M,BRUNNER C,LEEB R,et al.Seperability of four-class motor imagery data using independent components analysis[J].Journal of Neural Engineering,2006,3(3):208-216.
  • 5RAMOSER H,MULLER-GERKING J,PFURTSCHELLER G.Optimal spatial filtering of single trial EEG during imagined hand movement[J].IEEE Transactions on Rehabilitation Engineering,2000,8 (4):441-146.
  • 6PFURTSCHELLER G,LOPES DA SILVA F H.Eventrelated EEG/MEG synchronization and desynchronization:basic principles[J].Clinical Neurophysiology,1999,110(11):1842-1857.
  • 7BLANKERTZ B,TOMIOKA R,LEMM S,et al.Optimizing spatial filters for robust EEG single trial analysis[J].IEEE Signal Processing Magazine,2008,25 (1):41-56.
  • 8张屹,魏学业,蒋海峰.PSO/KNN算法及其在模拟故障诊断中的应用研究[J].电子测量与仪器学报,2007,21(6):25-30. 被引量:2
  • 9徐宝国,宋爱国.基于小波包变换和聚类分析的脑电信号识别方法[J].仪器仪表学报,2009,30(1):25-28. 被引量:52
  • 10杨平,刘铁军,尧德中.支持向量机后验概率方法在多任务脑机接口中的应用[J].中国生物医学工程学报,2009,28(2):171-176. 被引量:6

共引文献17

同被引文献54

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部