期刊文献+

自主选课匹配系统

Autonomous Course Selection Matching System
下载PDF
导出
摘要 自主选课在中学期间日渐普及,而选课最重要的是同学们各自的兴趣,如果分到一位自己不喜欢的老师或科目,学习效率会降低,甚至出现厌恶此科目,所以自主选课系统的构造尤为重要。随着深度学习以及大数据分析渗透各个领域,在生活中体现出极其重要的作用。本系统通过录制老师和学生上课视频,构造大数据库对老师和学生上课的行为分析进行记录,通过长短程神经网络(LSTM)对学生行为分析进行情绪解析,得到最后的匹配度,最终找到自己匹配度最高的三位老师,进行试课,通过试课找到自己适合的老师。这样,既提高学生上课的热情和效率,又保障了学校的生活氛围。同时该系统不依赖于学生主观评价,使得数据结果更为客观,不增加老师和学生的负担,而且有较强精度性以及实时性。此种系统可以同步的进行教学辅助,在中小学选课分析方面有着广泛的应用场景。 Independent course selection has become increasingly popular in middle school, and the most important thing for course selection is students’ interests. If they are assigned to a teacher or subject they don’t like, their learning efficiency will be reduced, or even they will dislike this subject. Therefore, the construction of the independent course selection system is particularly important. With the penetration of deep learning and big data analysis into various fields, it plays an extremely important role in life. This system through video recording the teacher and the student class, construct large database record behavior analysis of the teachers and students in class,through the long short-term memoty neural network(LSTM) on students’ emotion, behavior analysis to get the last match, finally found his match the highest three teachers, the trial class, through the test class find their suitable teacher. In this way, it can not only improve students’ enthusiasm and efficiency in class, but also ensure the school’s living atmosphere. At the same time, the system does not rely on the subjective evaluation of students, making the data results more objective, does not increase the burden of teachers and students, and has a strong accuracy and real-time. This kind of system can carry on the teaching assistance synchronously, has the widespread application scene in the elementary and middle school course selection analysis aspect.
作者 董思雨 Dong Siyu(Beijing 14th Middle School,Beijing,100053)
出处 《电子测试》 2019年第14期63-65,共3页 Electronic Test
关键词 教育辅助系统 长短程记忆网络 卷积神经网络 Educational Assistance System Long short-term memoty Convolutional neural metwork
  • 相关文献

参考文献15

二级参考文献299

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2肖柏旭,张丽静.基于分流抑制机制的卷积神经网络人脸检测法[J].计算机应用,2006,26(B06):46-48. 被引量:4
  • 3刘鹏,张岩,毛志刚.一种脉冲噪声图像复原算法[J].计算机研究与发展,2006,43(11):1939-1946. 被引量:4
  • 4Zhang Ying,Yang Xuejun,Wang Guibin,et al.Scientific Computing Applications on a Stream Processor[C]//Proc.of IEEE Int'l Symp.on Performance Analysis of Systems and Software.Austin,Texas,USA:[s.n.],2008:105-114.
  • 5Luebke D.CUDA:Scalable Parallel Programming for High-performance Scientific Computing[C]//Proc.of the 5th IEEE Int'l Symp.on Biomedical Imaging:From Nano to Macro.Paris,France:[s.n.],2008:836-838.
  • 6NVIDIA Corporation.NVIDIA CUDA Compute Unified Device Architecture Programming Guide 2.0[EB/OL].(2008-06-07).http:// developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf.
  • 7Lawrence S,Giles C L,Tsoi A C.Convolutional Neural Networks for Face Recognition[C]//Proc.of IEEE Computer Society Conference on CVPR.San Francisco,California,USA:[s.n.],1996:217-222.
  • 8田新广,孙春来,段洣毅.基于shell命令和Markov链模型的用户行为异常检测[J].电子与信息学报,2007,29(11):2580-2584. 被引量:8
  • 9Ivanov V K. On linear ill-posed problems [J]. Dokl Akad Nauk SSSR, 1962, 14(145): 270-272.
  • 10Phillips D L. A technique for the numerical solution of certain integral equations of the first kind [J]. Journal of the ACM, 1962, 9(1): 84-97.

共引文献1943

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部