期刊文献+

面向云环境中任务负载的粒子群优化调度策略 被引量:10

PSO Scheduling Strategy for Task Load in Cloud Computing
下载PDF
导出
摘要 随着云环境中任务规模的不断扩大,云计算中心高能耗问题变得日益突出.如何解决云环境中任务分配问题从而有效降低能耗,本文提出了一种改进的粒子群优化算法(Modified Particle Swarm Optimization,M-PSO).首先构建出一个云计算能耗模型,同时考虑处理器的执行能耗和任务传输能耗.基于该模型,对任务分配问题进行定义描述,并采用粒子群优化算法对问题进行求解.此外,构建动态调整的惯性权重系数函数以克服标准PSO算法的局部最优和收敛速度慢的问题,有效提高系统性能.最后通过仿真实验对该算法模型的性能进行了评估,结果表明M-PSO算法与其他算法相比能有效地降低系统总能耗. As the scale of tasks in the cloud environment continues to expand,the problem of high energy consumption in cloud computing centers has become increasingly prominent.In order to solve the problem of task assignment in a cloud environment and to effectively reduce energy consumption,a Modified Particle Swarm Optimization algorithm(M-PSO)was proposed.First,a cloud computing energy consumption model,which takes into account the processor's execution energy consumption and task transmission energy consumption,was introduced.Based on the model,the task assignment problem was defined and described,and the particle swarm optimization algorithm was used to solve this problem.In addition,a dynamically adjusted inertia weight coefficient function was constructed to overcome the local optimization and slow convergence problem of the standard PSO algorithm,and the strategy can effectively improve the system performance.Finally,the performance of the introduced algorithm model was evaluated by simulation experiments.The results show that the M-PSO algorithm can effectively reduce the total energy consumption of the system compared with other algorithms.
作者 胡志刚 常健 周舟 HU Zhigang;CHANG Jian;ZHOU Zhou(School of Computer Science and Engineering,Central South University,Changsha 410075,China;Department of Mathematics and Computer Science,Changsha University,Changsha 410022,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第8期117-123,共7页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61572525) 长沙市科技计划资助项目(k1705036) 湖南省自然科学基金青年基金项目(2019JJ50689) 中国博士后科学基金项目(2018M642974) 湖南省教育厅优秀青年基金项目(18B412)~~
关键词 云计算 任务调度 惯性权重 粒子群优化 cloud computing task scheduling inertia weight Particle Swarm Optimization(PSO)
  • 相关文献

参考文献3

二级参考文献59

  • 1徐锋,王远,张林,吕建.一个开放环境中信任链发现算法的设计与分析[J].计算机研究与发展,2006,43(z2):72-77. 被引量:2
  • 2胡定磊,陈书明.低功耗编译技术综述[J].电子学报,2005,33(4):676-682. 被引量:11
  • 3McCullough JC, Agarwal Y, Chandrashekar J, Kuppuswamy S, Snoeren AC, Gupta RK. Evaluating the effectiveness of model- based power characterization. In: Proc. of the USENIX Annual Technical Conf. USENIX Association Berkeley, 2011. 12. https://www.usenix.org/legacy/events/atc 11/tech/final_files/McCullough.pdf.
  • 4Pakbaznia E, Pedram M. Minimizing data center cooling and server power costs. In: Proc. of the 14th ACM/IEEE Int'l Symp. on Low Power Electronics and Design. New York: ACM Press, 2009. 145-150. [doi: 10.1145/1594233.1594268].
  • 5Bash C, Forman G. Cool job allocation: Measuring the power savings of placing jobs at cooling-efficient locations in the data center. In: Proc. of the 14th USENIX Annual Technical Conf. USENIX Association Berkeley, 2007. 138-140. http://dl.acm.org/ citation.cfm?id= 1364414.
  • 6Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in cloud computing: Enabling the future Internet of services. Internet Computing, IEEE, 2013,17(4):18-25. [doi: 10.1109/MIC.2012.69].
  • 7Barbulescu M, Grigoriu RO, Neculoiu G, Halcu I, Sandulescu VC, Niculescu-Faida O, Marinescu M, Marinescu V. Energy efficiency in cloud computing and distributed systems. In: Proc. of the 2013 14th RoEduNet Int'l Conf. on Networking in Education and Research. IEEE, 2013.1-5. [doi: 10.1109/RoEduNet.2013.6714197].
  • 8Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, 2007,35(2):13-23. [doi: 10.1145/1250662.1250665].
  • 9Hsu CH, Poole SW. Power signature analysis of the SPECpower_ssj2008 Benchmark. In: Proc. of the 2011 14th IEEE Int'l Symp. on Performance Analysis of Systems and Software (ISPASS). IEEE, 2011. 227-236. Idol: 10.1109/ISPASS.2011.5762739].
  • 10Beloglazov A, Abawajy J, Buyya R. Energy-Aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Generation Computer Systems, 2012,28(5):755-768. [doi: 10.10 t 6/j.future.2011.04.017].

共引文献143

同被引文献86

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部